Skip to main content
Log in

Morphology control and mechanisms of CaCO3 crystallization on gas-liquid interfaces of CO2/NH3 bubbles in aqueons-glycine solutions

  • Physical Chemistry of Surface Phenomena
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

As one of the new methods of materials preparing, interface-regulated mineralization, has been developed and used to fabricate the CaCO3 materials with mimetic construction of natural biogenic structures in the present work. Combined with the effect of glycine at different concentrations, novel gas-liquid interfaces of CO2/NH3 bubbles have been substituted for the traditional settled matrix and utilized as new reaction fields of CaCO3. CaCO3 crystals with delicate hierarchical structures and morphologies, such as scallop-shaped, ellipsoidal and spherical structure, have been obtained at the special glycine-mediated gasliquid interfaces. The effect of glycine concentration and the chemical reaction kinetics have been deeply studied. As a result, we have successfully captured in detail the crystallization behaviors of CaCO3 in different stages, which allow us to put forward a general kinetic model to reveal the formation mechanism of CaCO3 and implicate a straightforward mean to control the morphology and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Q. Li and H. C. Zeng, Adv. Mater. 24, 6277 (2012).

    Article  CAS  Google Scholar 

  2. N. R. Chevalier, C. Chevallard, M. Goldmann, et al., Cryst. Growth Des. 12, 2299 (2012).

    Article  CAS  Google Scholar 

  3. Y. Liu, Y. Cui, and R. Guo, Langmuir 28, 6097 (2012).

    Article  CAS  Google Scholar 

  4. H. Celfen, Top. Curr. Chem. 271, 1 (2007).

    Article  Google Scholar 

  5. H. Imai, N. Tochimoto, Y. Nishino, et al., Cryst. Growth Des. 12, 876 (2012).

    Article  CAS  Google Scholar 

  6. A. S. Schenk, I. Zlotnikov, B. Pokroy, et al., Adv. Funct. Mater. 22, 4668 (2012).

    Article  CAS  Google Scholar 

  7. L. Chen, Y. Shen, A. Xie, et al., Cryst. Growth Des. 10, 2073 (2010).

    Article  CAS  Google Scholar 

  8. A. N. Kulak, P. Iddon, Y. Li, et al., J. Am. Chem. Soc. 129, 3729 (2007).

    Article  CAS  Google Scholar 

  9. A.-J. Xie, Y.-H. Shen, X.-Y. Li, et al., Mater. Chem. Phys. 101, 87 (2007).

    Article  CAS  Google Scholar 

  10. P. K. Ajikumar, L. G. Wong, G. Subramanyam, et al., Cryst. Growth Des. 5, 1129 (2005).

    Article  CAS  Google Scholar 

  11. E. Asenath-Smith, H. Li, E. C. Keene, Z. W. Seh, et al., Adv. Funct. Mater. 22, 2891 (2012).

    Article  CAS  Google Scholar 

  12. A. E. Voinescu, D. Touraud, A. Lecker, et al., Langmuir 23, 12269 (2007).

    Article  CAS  Google Scholar 

  13. F. Z. Huang, S. K. Li, J. M. Song, et al., Cryst. Eng. Commun. 14, 1277 (2012).

    Article  CAS  Google Scholar 

  14. J.-H. Bang, Y. N. Jang, W. Kim, et al., Chem. Eng. J. 198, 254 (2012).

    Article  Google Scholar 

  15. Y. Ma, S. R. Cohen, L. Addadi, et al., Adv. Mater. 20, 1555 (2008).

    Article  CAS  Google Scholar 

  16. B. Pokroy and J. Aizenberg, Cryst. Eng. Commun. 9, 1219 (2007).

    Article  CAS  Google Scholar 

  17. T. Tomioka, M. Fuji, M. Takahashi, et al., Cryst. Growth Des. 12, 771 (2012).

    Article  CAS  Google Scholar 

  18. Y. Han, M. Fuji, D. Shehukin, et al., Cryst. Growth Des. 9, 3771 (2009).

    Article  CAS  Google Scholar 

  19. C. Hu, Chem. Lett. 40, 228 (2011).

    Article  CAS  Google Scholar 

  20. A. Garcia-Abuin, D. Gomez-Diaz, J. M. Navaza, et al., Ind. Eng. Chem. Res. 50, 1017 (2011).

    Article  CAS  Google Scholar 

  21. J.-H. Bang, Y. N. Jang, W. Kim, et al., Chem. Eng. J. 174, 413 (2011).

    Article  CAS  Google Scholar 

  22. M. Lahav and L. Leiserowitz, Angew. Chem. Int. Ed. 47, 3680 (2008).

    Article  CAS  Google Scholar 

  23. M. Balz, H. A. Therese, J. X. Li, et al., Adv. Funct. Mater 15, 683 (2005).

    Article  CAS  Google Scholar 

  24. Y. J. Han and J. Aizenberg, J. Am. Chem. Soc. 125, 4032 (2003).

    Article  CAS  Google Scholar 

  25. A. J. Xie, Y. H. Shen, C. Y. Zhang, et al., J. Cryst. Growth 285, 436 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangzhi Huang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Huang, F., Li, J. et al. Morphology control and mechanisms of CaCO3 crystallization on gas-liquid interfaces of CO2/NH3 bubbles in aqueons-glycine solutions. Russ. J. Phys. Chem. 89, 1091–1095 (2015). https://doi.org/10.1134/S0036024415060333

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415060333

Keywords

Navigation