Skip to main content
Log in

Kinetic Monte Carlo simulation of 4-nitrophenol ozonation in the presence of ZnO nanocatalyst

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Kinetics and mechanism of 4-nitrophenol (4NP) ozonation in the presence of ZnO nanocatalyst were investigated by kinetic Monte Carlo simulation. A mechanism for catalytic ozonation of 4NP with ZnO nanocatalyst was suggested and the rate constants of each step were obtained. It was shown that the simulated kinetics data are in good agreement with experimental data. By using the obtained mechanism and kinetics parameters, the effect of initial concentrations of ozone, 4NP and nanocatalyst on the rate of ozonation was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ammar, N. Oturan, and M. A. Oturan, J. Environ. Eng. Manage. 17, 89 (2007).

    CAS  Google Scholar 

  2. N. San, A. Hatipoglu, G. Koçtürk and Z. Çınar, J. Photochem. Photobiol. A: Chem. 146, 189 (2002).

    Article  CAS  Google Scholar 

  3. M. Mehrjouei, S. Müller, and D. Moller, J. Photochem. Photobiol. A: Chem. 217, 417 (2011).

    Article  CAS  Google Scholar 

  4. X. Zhai, Z. Chen, S. Zhao, H. Wang, and L. Yang, J. Environ. Sci. 22, 1527 (2010).

    Article  CAS  Google Scholar 

  5. H. Jung and H. Choi, Appl. Catal. B: Environ. 66, 288 (2006).

    Article  CAS  Google Scholar 

  6. L. Zhao, Z. Sun, J. Ma, and H. Liu, J. Mol. Catal. A: Chem. 322, 26 (2010).

    Article  CAS  Google Scholar 

  7. B. K. Hordern, M. Ziółek, and J. Nawrocki, Appl. Catal. B: Environ. 46, 639 (2003).

    Article  Google Scholar 

  8. S. Chaturved, P. N. Dave, and N. K. Shah, J. Saudi Chem. Soc. 16, 307 (2012).

    Article  Google Scholar 

  9. Z. Z. Xu, Y. Ben, Z. Chen, and F. Qi, Mater. Res. Bull. 48, 1725 (2013).

    Article  CAS  Google Scholar 

  10. P. Banerjee, S. Chakrabarti, S. Maitra, and B. K. Dutta, Ultrason. Sonochem. 19, 85 (2012).

    Article  CAS  Google Scholar 

  11. S. M. Tabatabaei, S. Dastmalchi, A. Mehrizad, and P. Gharbani, Iran. J. Environ. Health Sci. Eng. 8, 4 (2011).

    Google Scholar 

  12. D. T. Gillespie, Comput. Phys. 2, 403 (1976).

    Article  Google Scholar 

  13. A. R. J. Jansen, Comput. Phys. Commun. 86, 1 (1995).

    Article  CAS  Google Scholar 

  14. T. P. Schulze, J. Comput. Phys. 227, 2455 (2008).

    Article  Google Scholar 

  15. IBM, CSK Chemical Kinetics Simulator 1.01 (IBM Almaden Research Center, IBM Corporation, 1995).

    Google Scholar 

  16. P. Zarzycki, J. Colloid Interface Sci. 315, 54 (2007).

    Article  CAS  Google Scholar 

  17. M. I. Rojas, M. C. Gimenez, and E. P. M. Leiva, Surf. Sci. 581, 109 (2005).

    Article  Google Scholar 

  18. L. Liau and Ch. Y. Lin, Colloids Surf. A 388, 70 (2011).

    Article  CAS  Google Scholar 

  19. H. Bashiri, H. M. Jalali, and H. Rasa, Prog. React. Kinet. Mech. 39, 281 (2014).

    Article  CAS  Google Scholar 

  20. W. Huang, G. Ch. Fang, and Ch. Ch. Wang, Colloids Surf. A: Physicochem. Eng. 260, 45 (2005).

    Article  CAS  Google Scholar 

  21. H. Bashiri and M. Rafiee, J. Saudi Chem. Soc. (2014, in press).

    Google Scholar 

  22. Sh.-S. Lin and M. D. Gurol, Environ. Sci. Technol. 32, 1417 (1998).

    Article  CAS  Google Scholar 

  23. L. Zhao, J. Ma, and Z. Sun, Appl. Catal. B: Environ. 79, 244 (2008).

    Article  CAS  Google Scholar 

  24. C. H. Wu, C. Y. Kuo, and C. L. Chang, J. Hazard. Mater. 153, 1052 (2008).

    Article  CAS  Google Scholar 

  25. B. Legube and N. K. Leitner, Catal. Today 53, 61 (1999).

    Article  CAS  Google Scholar 

  26. S. Ammar, N. Oturan, and M. A. Oturan, J. Environ. Eng. Manage. 17, 89 (2007).

    CAS  Google Scholar 

  27. M. Khatamian, A. A. Khandar, B. Divband, M. Haghighi, and S. Ebrahimiasl, J. Mol. Catal. A: Chem. 365, 120 (2012).

    Article  CAS  Google Scholar 

  28. P. Gharbani and A. Mehrizad, J. Saudi Chem. Soc. 18, 601 (2014).

    Article  CAS  Google Scholar 

  29. L. Zhao, J. Ma, and Z.-Z. Sun, Appl. Catal. B: Environ. 79, 244 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadis Bashiri.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiee, M., Bashiri, H. Kinetic Monte Carlo simulation of 4-nitrophenol ozonation in the presence of ZnO nanocatalyst. Russ. J. Phys. Chem. 89, 982–986 (2015). https://doi.org/10.1134/S0036024415060205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415060205

Keywords

Navigation