Skip to main content
Log in

Influence of the content of Mn2+ on the phase composition of the precursor of MnO x -Al2O3 catalyst and the catalytic activity in the oxidation reaction of methane

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The influence of the concentration of Mn2+ in a solution for the hydrolysis of nanosized aluminum powder on the phase composition of the precursor and the content of manganese in samples of aluminum hydroxide is studied. Stages of the formation of catalysts from the precursors are studied by means of synchronic thermogravimetric (TG)-differential scanning calorimetry (DSC) analysis and X-ray phase analysis (XPA). The influence of the number of manganese ions in aluminum hydroxide on the phase composition and catalytic properties of MnO x -Al2O3 systems in the reaction of the deep oxidation of methane is also studied. It is shown that an increase in the concentration of manganese ions in the solution for hydrolysis raises the content of unreacted aluminum and X-ray amorphous hydroxides in the precursors of the catalysts. It is established that the phase composition of the catalyst and the catalytic activity in the reaction of the deep oxidation of methane depend on the content of manganese in the precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Prasad, L. Kennedy, and E. Ruckenstein, Catal. Rev.: Sci. Eng. 26, 1 (1984).

    Article  CAS  Google Scholar 

  2. Z. R. Ismagilov and M. A. Kerzhentsev, Khim. Promst., No. 3, 197 (1996).

    Google Scholar 

  3. M. R. Kantserova and S. N. Orlik, Kinet. Catal. 48, 414 (2007).

    Article  CAS  Google Scholar 

  4. S. I. Galanov, I. N. Mutas, L. N. Kurina, et al., Russ. J. Appl. Chem. 75, 1643 (2002).

    Article  CAS  Google Scholar 

  5. T. P. Otroshchenko, A. O. Turakulova, V. A. Voblikova, et al., Russ. J. Phys. Chem. A 87, 1804 (2013).

    Article  CAS  Google Scholar 

  6. E. N. Vinogradova, V. N. Dulnev, V. N. Efremov, and E. Z. Golosman, Russ. J. Appl. Chem. 83, 84 (2010).

    Article  CAS  Google Scholar 

  7. B. Nowicki, J. Hetper, and Z. Wietrzynska-Lalak, React. Kinet. Catal. Lett. 75, 323 (2002).

    Article  CAS  Google Scholar 

  8. P. G. Tsyrul’nikov, Ross. Khim. Zh. 51(3), 133 (2007).

    Google Scholar 

  9. A. F. Dresvyannikov, E. V. Petrova, M. A. Tsyganova, et al., Russ. J. Phys. Chem. A 84, 642 (2010).

    Article  CAS  Google Scholar 

  10. S. F. Tikhov, V. E. Romanenkov, V. A. Sadykov, V. N. Parmon, and A. I. Rat’ko, Kinet. Catal. 46, 641 (2005).

    Article  CAS  Google Scholar 

  11. M. V. Trenikhin, A. G. Kozlov, A. I. Nizovskii, et al., Ross. Khim. Zh. 51(4), 126 (2007).

    CAS  Google Scholar 

  12. E. N. Gryaznova, L. N. Shiyan, N. A. Yavorovskii, et al., Russ. J. Appl. Chem. 86, 360 (2013).

    Article  CAS  Google Scholar 

  13. V. S. Kortov, A. E. Ermakov, A. F. Zatsepin, M.A. Uimin, S. V. Nikiforov, A. A. Mysik, and V. S. Gaviko, Phys. Solid State 50, 957 (2008).

    Article  CAS  Google Scholar 

  14. T. A. Fedushchak, A. E. Ermakov, M. A. Uimin, et al., Russ. J. Phys. Chem. A 82, 608 (2008).

    CAS  Google Scholar 

  15. S. I. Galanov, O. I. Sidorova, E. N. Gryaznova, et al., Izv. Tomsk. Politekh. Univ. 324(3), 88 (2014).

    Google Scholar 

  16. S. I. Galanov and O. I. Sidorova, Russ. J. Phys. Chem. A 88, 1629 (2014).

    Article  CAS  Google Scholar 

  17. D. V. Ivanov, L. G. Pinaeva, E. M. Sadovskaya, and L. A. Isupova, Kinet. Catal. 52, 401 (2011).

    Article  CAS  Google Scholar 

  18. Ch. Satterfield, Heterogeneous Catalysis in Practice (McGraw-Hill, New York, 1980; Mir, Moscow, 1984).

    Google Scholar 

  19. V. A. Dzis’ko, A. P. Karnaukhov, and D. V. Tarasova, Physicochemical Fundamentals of the Synthesis of Oxide Catalysts (Nauka, Novosibirsk, 1978) [in Russian].

    Google Scholar 

  20. G. D. Chukin, Structure of Aluminum Oxide and Hydrodesulfurization Catalysts. Mechanisms of Reactions (Paladin, Printa, Moscow, 2010) [in Russian].

    Google Scholar 

  21. R. A. Zotov, A. A. Glazyrin, V. V. Danilevich, I. V. Kharina, D. A. Zyuzin, A. M. Volodin, and L. A. Isupova, Kinet. Catal. 53, 570 (2012).

    Article  CAS  Google Scholar 

  22. E. V. Petrova, A. F. Dresvyannikov, and A. V. Vinokurov, Russ. J. Phys. Chem. A 87, 479 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Galanov.

Additional information

Original Russian Text © S.I. Galanov, O.I. Sidorova, E.N. Gryaznova, L.N. Shiyan, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 6, pp. 944–951.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galanov, S.I., Sidorova, O.I., Gryaznova, E.N. et al. Influence of the content of Mn2+ on the phase composition of the precursor of MnO x -Al2O3 catalyst and the catalytic activity in the oxidation reaction of methane. Russ. J. Phys. Chem. 89, 974–981 (2015). https://doi.org/10.1134/S0036024415060102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415060102

Keywords

Navigation