Russian Journal of Physical Chemistry A

, Volume 88, Issue 13, pp 2446–2450 | Cite as

Influence of laser irradiation on the optical properties of nano-sized powder of metal oxide

  • W. A. Farooq
  • S. M. Ali
  • Walid Tawfik
  • Amanullah Fatehmulla
  • M. Aslam
  • A. S. Al-Dwayyan
  • M. S. AlSalhi
Photochemistry and Magnetochemistry
  • 70 Downloads

Abstract

ZnO Nano powders were prepared by co-precipitation method which includes post-oxidation and annealing in air. Influence of laser irradiation was carried out using 355 nm laser on the physical properties of ZnO nanoparticles. SEM studies reveal agglomeration of grains resulting into enlargement and deformation of the nanoparticles. XRD pattern exhibited decrease in FWHM which is a clear evidence of the increase in crystallite size due to laser irradiation. Optical properties showed decrease in the band gap of the laser irradiated Nano powders. The observed results indicated the UV laser irradiation increases the ZnO nanoparticles crystallinity that affects the optical properties of the ZnO.

Keywords

nanoparticles laser irradiation co-precipitation post-oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. C. Lee, W. Y. Lin, and F. T. Jeng, J. Occupat. Safety Health 17, 163 (2009).Google Scholar
  2. 2.
    C. Darnault, K. Rockne, A. Stevens, G. A. Mansoori, and N. Sturchio, Water. Environ. Res. 177, 2576 (2005).CrossRefGoogle Scholar
  3. 3.
    O. V. Makarova, T. Rajh, M. C. Thurnauer, A. Martin, P. A. Kemme, and D. Cropek, Environ. Sci. Technol. 34, 4797 (2000).CrossRefGoogle Scholar
  4. 4.
    J.-L. Li and M. Gu, IEEE J. Sel. Top. Quantum Electron. 16, 4 (2010).CrossRefGoogle Scholar
  5. 5.
    K. Landfester, Adv. Mater. 10, 13 (2001).Google Scholar
  6. 6.
    N. S. Tabrizi, M. Ullmann, V. A. Vons, U. Lafont, and A. Schmidt-Ott, J. Nanopart. Res. 11, 315 (2009).CrossRefGoogle Scholar
  7. 7.
    U. R. Kortshagen, U. V. Bhandarkar, M. T. Swihart, and S. L. Girshick, Pure Appl. Chem. 71, 1871 (1999).CrossRefGoogle Scholar
  8. 8.
    R. D. Glover, J. M. Miller, and J. E. Hutchison, ACS Nano 5, 8950 (2011).CrossRefGoogle Scholar
  9. 9.
    T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, Phys. Rev. Lett. 88, 067404 (2002).CrossRefGoogle Scholar
  10. 10.
    M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, IEEE J. Sel. Top. Quantum Electron. 14, 1404 (2008).CrossRefGoogle Scholar
  11. 11.
    T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003).CrossRefGoogle Scholar
  12. 12.
    T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G. C. Yi, Appl. Phys. Lett. 90, 223110 (2007).CrossRefGoogle Scholar
  13. 13.
    T. Kawazoe, M. Ohtsu, S. Aso, Y. Sawado, Y. Hosoda, K. Yoshizawa, K. Akahane, N. Yamamoto, and M. Naruse, Appl. Phys. B 103, 537 (2011).CrossRefGoogle Scholar
  14. 14.
    T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, and M. Ohtsu, Appl. Phys. B 84, 243 (2006)CrossRefGoogle Scholar
  15. 15.
    W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, J. Nanophoton. 1, 011591 (2007).CrossRefGoogle Scholar
  16. 16.
    T. Kawazoe, K. Kobayashi, and M. Ohtsu, Appl. Phys. Lett. 86, 103102 (2005).CrossRefGoogle Scholar
  17. 17.
    W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, and M. Ohtsu, Appl. Phys. B 100, 181 (2010).CrossRefGoogle Scholar
  18. 18.
    T. Yatsui, H. Jeong, and M. Ohtsu, Appl. Phys. B 93, 199 (2008).CrossRefGoogle Scholar
  19. 19.
    T. Yatsui, Y. Ryu, T. Morishima, W. Nomura, T. Kawazoe, T. Yonezawa, M. Washizu, H. Fujita, and M. Ohtsu, Appl. Phys. Lett. 96, 133106 (2010).CrossRefGoogle Scholar
  20. 20.
    Y. Liu, T. Yatsui, and M. Ohtsu, Appl. Phys. B 108, 707 (2012).CrossRefGoogle Scholar
  21. 21.
    A. Ashour, M. A. Kaid, N. Z. El-Sayed, and A. A. Ibrahim, Appl. Surf. Sci. 252, 7844 (2006).CrossRefGoogle Scholar
  22. 22.
    D. Raoufi, Renewable Energy 50, 932 (2013).CrossRefGoogle Scholar
  23. 23.
    B. Cheng, J. M. Russel, W. S. Shi, L. Zhang, and E. T. J. Samulski, J. Am. Chem. Soc. 126, 5972 (2004).CrossRefGoogle Scholar
  24. 24.
    Q. H. Wu, J. Song, J. Kang, Q. F. Dong, S. T. Wu, and S. G. Sun, Mater. Lett. 61, 3679 (2007).CrossRefGoogle Scholar
  25. 25.
    Sh. Takahashi, Yu. Hasuike, A. Noguchi, T. Tsuge, M. Ishikawa, O. Odawara, and H. Wada, Jpn. J. Appl. Phys. 49, 052602 (2010).CrossRefGoogle Scholar
  26. 26.
    T. van Buuren, L. N. Dinh, L. L. Chase, W. J. Siekhaus, and L. J. Terminello, Phys. Rev. Lett. 80, 3803 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • W. A. Farooq
    • 1
  • S. M. Ali
    • 1
  • Walid Tawfik
    • 1
    • 2
  • Amanullah Fatehmulla
    • 1
  • M. Aslam
    • 1
  • A. S. Al-Dwayyan
    • 1
  • M. S. AlSalhi
    • 1
  1. 1.Department of Physics and Astronomy College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Environmental Applications, NILES National Institute of LaserCairo UniversityCairoEgypt

Personalised recommendations