Influence of laser irradiation on the optical properties of nano-sized powder of metal oxide
- 70 Downloads
Abstract
ZnO Nano powders were prepared by co-precipitation method which includes post-oxidation and annealing in air. Influence of laser irradiation was carried out using 355 nm laser on the physical properties of ZnO nanoparticles. SEM studies reveal agglomeration of grains resulting into enlargement and deformation of the nanoparticles. XRD pattern exhibited decrease in FWHM which is a clear evidence of the increase in crystallite size due to laser irradiation. Optical properties showed decrease in the band gap of the laser irradiated Nano powders. The observed results indicated the UV laser irradiation increases the ZnO nanoparticles crystallinity that affects the optical properties of the ZnO.
Keywords
nanoparticles laser irradiation co-precipitation post-oxidationPreview
Unable to display preview. Download preview PDF.
References
- 1.Y. C. Lee, W. Y. Lin, and F. T. Jeng, J. Occupat. Safety Health 17, 163 (2009).Google Scholar
- 2.C. Darnault, K. Rockne, A. Stevens, G. A. Mansoori, and N. Sturchio, Water. Environ. Res. 177, 2576 (2005).CrossRefGoogle Scholar
- 3.O. V. Makarova, T. Rajh, M. C. Thurnauer, A. Martin, P. A. Kemme, and D. Cropek, Environ. Sci. Technol. 34, 4797 (2000).CrossRefGoogle Scholar
- 4.J.-L. Li and M. Gu, IEEE J. Sel. Top. Quantum Electron. 16, 4 (2010).CrossRefGoogle Scholar
- 5.K. Landfester, Adv. Mater. 10, 13 (2001).Google Scholar
- 6.N. S. Tabrizi, M. Ullmann, V. A. Vons, U. Lafont, and A. Schmidt-Ott, J. Nanopart. Res. 11, 315 (2009).CrossRefGoogle Scholar
- 7.U. R. Kortshagen, U. V. Bhandarkar, M. T. Swihart, and S. L. Girshick, Pure Appl. Chem. 71, 1871 (1999).CrossRefGoogle Scholar
- 8.R. D. Glover, J. M. Miller, and J. E. Hutchison, ACS Nano 5, 8950 (2011).CrossRefGoogle Scholar
- 9.T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, Phys. Rev. Lett. 88, 067404 (2002).CrossRefGoogle Scholar
- 10.M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, IEEE J. Sel. Top. Quantum Electron. 14, 1404 (2008).CrossRefGoogle Scholar
- 11.T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003).CrossRefGoogle Scholar
- 12.T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G. C. Yi, Appl. Phys. Lett. 90, 223110 (2007).CrossRefGoogle Scholar
- 13.T. Kawazoe, M. Ohtsu, S. Aso, Y. Sawado, Y. Hosoda, K. Yoshizawa, K. Akahane, N. Yamamoto, and M. Naruse, Appl. Phys. B 103, 537 (2011).CrossRefGoogle Scholar
- 14.T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, and M. Ohtsu, Appl. Phys. B 84, 243 (2006)CrossRefGoogle Scholar
- 15.W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, J. Nanophoton. 1, 011591 (2007).CrossRefGoogle Scholar
- 16.T. Kawazoe, K. Kobayashi, and M. Ohtsu, Appl. Phys. Lett. 86, 103102 (2005).CrossRefGoogle Scholar
- 17.W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, and M. Ohtsu, Appl. Phys. B 100, 181 (2010).CrossRefGoogle Scholar
- 18.T. Yatsui, H. Jeong, and M. Ohtsu, Appl. Phys. B 93, 199 (2008).CrossRefGoogle Scholar
- 19.T. Yatsui, Y. Ryu, T. Morishima, W. Nomura, T. Kawazoe, T. Yonezawa, M. Washizu, H. Fujita, and M. Ohtsu, Appl. Phys. Lett. 96, 133106 (2010).CrossRefGoogle Scholar
- 20.Y. Liu, T. Yatsui, and M. Ohtsu, Appl. Phys. B 108, 707 (2012).CrossRefGoogle Scholar
- 21.A. Ashour, M. A. Kaid, N. Z. El-Sayed, and A. A. Ibrahim, Appl. Surf. Sci. 252, 7844 (2006).CrossRefGoogle Scholar
- 22.D. Raoufi, Renewable Energy 50, 932 (2013).CrossRefGoogle Scholar
- 23.B. Cheng, J. M. Russel, W. S. Shi, L. Zhang, and E. T. J. Samulski, J. Am. Chem. Soc. 126, 5972 (2004).CrossRefGoogle Scholar
- 24.Q. H. Wu, J. Song, J. Kang, Q. F. Dong, S. T. Wu, and S. G. Sun, Mater. Lett. 61, 3679 (2007).CrossRefGoogle Scholar
- 25.Sh. Takahashi, Yu. Hasuike, A. Noguchi, T. Tsuge, M. Ishikawa, O. Odawara, and H. Wada, Jpn. J. Appl. Phys. 49, 052602 (2010).CrossRefGoogle Scholar
- 26.T. van Buuren, L. N. Dinh, L. L. Chase, W. J. Siekhaus, and L. J. Terminello, Phys. Rev. Lett. 80, 3803 (1998).CrossRefGoogle Scholar