Advertisement

Russian Journal of Physical Chemistry A

, Volume 88, Issue 12, pp 2046–2053 | Cite as

Thermodynamic properties of furan-2-carboxylic and 3-(2-furyl)-2-propenoic acids

  • I. B. SobechkoEmail author
  • Yu. Ya. Van-Chin-Syan
  • V. V. Kochubei
  • R. T. Prokop
  • N. I. Velychkivska
  • Yu. I. Gorak
  • V. N. Dibrivnyi
  • M. D. Obushak
Chemical Thermodynamics and Thermochemistry

Abstract

The standard enthalpies of combustion, formation, fusion, and sublimation of crystalline furan-2-carboxylic and 3-(2-furyl)-2-propenoic acids are determined by experimental methods and recalculated to 298 K. The possibility of using additive calculation schemes based on the principle of group contributions to calculate the standard enthalpies of vaporization and formation of substances with similar combinations of functional fragments in the gas phase is analyzed.

Keywords

furoic acids calorimetry Knudsen effusion thermogravimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Ponomarev, Syntheses and Reactions of Furan Substances (Saratov. Univ., Saratov, 1960) [in Russian].Google Scholar
  2. 2.
    Experimental Thermochemistry, Ed. by F. D. Rossini (Interscience, New York, London, 1956), Vol. 2.Google Scholar
  3. 3.
    S. M. Skuratov, V. P. Kolesov, and A. F. Vorob’ev, Thermochemistry (Mosk. Gos. Univ., Moscow, 1965) [in Russian].Google Scholar
  4. 4.
    CODATA Recommended Key Values for Thermodynamics 1977, J. Chem. Thermodyn., No. 10, 903 (1978).Google Scholar
  5. 5.
    V. N. Dibrivnyi, G. V. Lutsiv, Yu. Ya. Chin-Syan, et al., Russ. J. Phys. Chem. A 73, 2040 (1999).Google Scholar
  6. 6.
    R. S. Bradley and T. G. Cleasby, J. Chem. Soc. London, 2 (1953).Google Scholar
  7. 7.
    D. F. Rourke and S. C. Mraw, J. Chem. Thermodyn., No. 15, 489 (1983).Google Scholar
  8. 8.
    A. Cingolani and G. Berchiesi, J. Therm. Anal., No. 6, 87 (1974).Google Scholar
  9. 9.
    V. P. Egunov, Introduction to Thermal Analysis (Samara, 1992) [in Russian].Google Scholar
  10. 10.
    D. J. David, Anal. Chem. 36, 2162 (1964).CrossRefGoogle Scholar
  11. 11.
    J. S. Chickos and W. E. Acree, J. Phys. Chem. Ref. Data 32, 519 (2003).CrossRefGoogle Scholar
  12. 12.
    Chemistry Web-Book. http://webbook.nist.gov
  13. 13.
    I. A. Vasil’ev and V. M. Petrov, The Thermodynamic Properties of Oxygen-Containing Organic Compounds (Khimiya, Leningrad, 1984) [in Russian].Google Scholar
  14. 14.
    I. B. Sobechko, R. T. Prokop, Yu. I. Gorak, et al., Vopr. Khim. Khim. Tekhnol., No. 4, 12 (2013).Google Scholar
  15. 15.
    S. Benson, Thermochemical Kinetics (Wiley, New York, 1968).Google Scholar
  16. 16.
    Yu. A. Lebedev and E. A. Miroshnichenko, Thermochemistry of Vaporization of Organic Substances: Handbook (Nauka, Moscow, 1981) [in Russian].Google Scholar
  17. 17.
    G. B. Guthrie, D. W. Scott, W. N. Hubbard, et al., J. Am. Chem. Soc. 74, 4662 (1952).CrossRefGoogle Scholar
  18. 18.
    V. Majer and V. Svoboda, Enthalpies of Vaporization of Organic Compounds (Oxford, 1985).Google Scholar
  19. 19.
    P. Landrieu, F. Baylocq, and J. R. Johnson, Bull. Soc. Chim. Fr. 45, 36 (1929).Google Scholar
  20. 20.
    P. Miller, Iowa State Coll. J. Sci., No. 10, 91 (1936).Google Scholar
  21. 21.
    F. Avramescu and D. A. Isagescu, Rev. Roum. Chim. 23, 655 (1978).Google Scholar
  22. 22.
    J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of Organic Compounds (Chapman and Hall, London, 1986).CrossRefGoogle Scholar
  23. 23.
    J. H. Mathews, J. Am. Chem. Soc. 48, 562 (1926).CrossRefGoogle Scholar
  24. 24.
    E. J. Prosen and F. D. Rossini, J. Res. NBS 34, 59 (1945).Google Scholar
  25. 25.
    E. J. Prosen, F. W. Maron, and F. D. Rossini, J. Res. NBS 46, 106 (1951).Google Scholar
  26. 26.
    G. Pilcher, H. A. Skinner, A. S. Pell, and A. E. Pope, Trans. Faraday Soc. 59, 316 (1963).CrossRefGoogle Scholar
  27. 27.
    F. T. Miles and A. W. C. Menzies, J. Phys. Chem. 37, 425 (1933).CrossRefGoogle Scholar
  28. 28.
    M. A. Dolliver, T. L. Gresham, G. B. Kistiakowsky, et al., J. Am. Chem. Soc. 60, 440 (1938).CrossRefGoogle Scholar
  29. 29.
    M. S. Kharash, J. Res. NBS 2, 359 (1929).Google Scholar
  30. 30.
    V. S. Markovnik, A. I. Sachek, and A. D. Peshchenko, Termodin. Org. Soedin., No. 7, 107 (1979).Google Scholar
  31. 31.
    Yu. Ya. Syan, V. V. Kochubei, V. V. Sergeev, et al., Sov. J. Phys. Chem. 70, 1789 (1996).Google Scholar
  32. 32.
    J. P. Guthrie, Can. J. Chem. 56, 962 (1978).CrossRefGoogle Scholar
  33. 33.
    R. Vilcu and S. Perisanu, Rev. Roum. Chim. 25, 619 (1980).Google Scholar
  34. 34.
    V. V. Kochubei, I. B. Sobechko, N. I. Velichkovskaya, et al., in Proceedings of the 14th International Conference on Thermal Analysis and Calorimetry in Russia RTAS-2013, September 23–28, 2013 (St. Petersburg, 2013), p. 312.Google Scholar
  35. 35.
    K. S. Pitzer, L. Guttman, and E. F. Westrum, J. Am. Chem. Soc. 68, 2209 (1946).CrossRefGoogle Scholar
  36. 36.
    D. Zavoianu, I. Ciocazan, S. Moga-Gheorghe, and C. Bornaz, Rev. Roum. Chim. 41, 234 (1990).Google Scholar
  37. 37.
    V. V. Serpinskii, S. A. Voitkevich, and N. Yu. Lyuboshits, Zh. Fiz. Khim. 27, 1032 (1953).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. B. Sobechko
    • 1
    Email author
  • Yu. Ya. Van-Chin-Syan
    • 1
  • V. V. Kochubei
    • 1
  • R. T. Prokop
    • 1
  • N. I. Velychkivska
    • 1
  • Yu. I. Gorak
    • 2
  • V. N. Dibrivnyi
    • 1
  • M. D. Obushak
    • 2
  1. 1.Lviv Polytechnic National UniversityLvivUkraine
  2. 2.Ivan Franko National UniversityLvivUkraine

Personalised recommendations