Skip to main content
Log in

An experiment study on fluid heat and mass transfer properties in porous media using MRI

  • Physical Chemistry of Surface Phenomena
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The objective of this study was to understand fluid heat and mass transfer processes in porous media with different pore structures. High-resolution Magnetic Resonance Imaging was used to measure fluid flow velocity and temperature maps in porous media. Firstly, three orthogonal velocity components (V x , V y , and V z ) of single phase flow measurement were evaluated. The flow distribution in porous media is rather heterogeneous, and it is consistent with heterogeneous pore structure, and the velocity in large pore is high. Then we presented initial results from the extension of this work to two-phase flow. The CO2 channeling phenomena were obvious. And the CO2 velocity was calculated from saturation of water. Finally, the linearity relationship between temperature and the MRI parameter was determined for porous media, and we measured the temperature distribution of water saturated porous media. The study provides useful data for heat and mass process during CO2 storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Anadon, A. J. Gladden, L. F. Gladden, et al., Asian J. Chem. Eng. 52, 1522 (2006).

    CAS  Google Scholar 

  2. F. Bertsch, J. Mattner, M. K. Stehling, et al., Magn. Reson. Imag. 16, 393 (1998).

    Article  CAS  Google Scholar 

  3. M. H. G. Amin, R. J. Chorley, K. S. Richards, et al., Hydrol. Process. 11, 471 (1997).

    Article  Google Scholar 

  4. K. W. Moser, E. C. Kutter, J. G. Georgiadis, et al., Exp. Fluids 29, 438 (2000).

    Article  CAS  Google Scholar 

  5. R. J. Ordidge, P. Gibbs, B. Chapman, et al., Magn. Reson. Med. 16, 228 (1990).

    Article  Google Scholar 

  6. B. L. Dou, Y. C. Song, and Y. G. Liu, J. Hazard. Mater. 183, 759 (2010).

    Article  CAS  Google Scholar 

  7. M. L. Johns, A. J. Sederman, A. S. Bramley, et al., AICHE J. 46, 2152 (2000).

    Article  Google Scholar 

  8. M. G. Kleinhans, C. R. L. P. Jeukens, C. G. Bakker, et al., Sediment. Geol. 208, 69 (2008).

    Article  CAS  Google Scholar 

  9. L. F. Gladden and L. D. Gnadon, Ind. Eng. Chem. Res. 44, 6320 (2005).

    Article  CAS  Google Scholar 

  10. L. Li, Q. Chen, A. E. Marble, et al., J. Magn. Reson. 197, 1 (2009).

    Article  CAS  Google Scholar 

  11. J. Gotz, K. Zick, C. Heinen, et al., Chem. Eng. Process. 41, 611 (2002).

    Article  CAS  Google Scholar 

  12. X. H. Ren, S. Stapf, B. Blümich, et al., Chem. Eng. Technol. 28, 219 (2005).

    Article  CAS  Google Scholar 

  13. L. Sezalinski, L. A. Abdulkareem, M. J. Silva, et al., Chem. Eng. Sci. 65, 3836 (2010).

    Article  Google Scholar 

  14. E. Henderson, G. McKinnon, T. Y. Lee, et al., Magn. Reson. Imag. 17, 1163 (1999).

    Article  CAS  Google Scholar 

  15. J. Imran, F. C. Langevin, and J. H. Saint, Magn. Reson. Imag. 17, 1347 (1999).

    Article  CAS  Google Scholar 

  16. K. Kuroda, K. Oshio, and R. V. Mulern, Magn. Reson. Med. 43, 220 (2000).

    Article  CAS  Google Scholar 

  17. K. Kuroda, N. Takei, and R. V. Mulkern, Magn. Reson. Med. Sci. 2, 17 (2003).

    Article  Google Scholar 

  18. P. B. Kingsley and G. W. Monahan, Magn. Res. Imag. 19, 279 (2001).

    Article  CAS  Google Scholar 

  19. R. Lufkin, Radiology 197, 16 (1995).

    Article  CAS  Google Scholar 

  20. E. Moser, E. Winklmayr, P. Holzmuller, et al., Magn. Reson. Imag. 13, 49 (1995).

    Article  Google Scholar 

  21. C. L. D. Sean, M. P. Terry, and K. R. Brian, Magn. Reson. Med. 53, 237 (2005).

    Article  Google Scholar 

  22. K. Michael, J. C. Perrinand, and S. Bensona, Energy Proc. 4, 4354 (2011).

    Article  Google Scholar 

  23. M. Deurer, I. Vogeler, and A. Khrapitchev, J. Environ. Qual. 31, 487 (2002).

    Article  CAS  Google Scholar 

  24. T. Baumann, R. Petsch, G. Fesl, et al., J. Environ. Qual. 31, 470 (2002).

    Article  CAS  Google Scholar 

  25. M. H. Sankey, D. J. Holl, and A. J. Sederman, et al., J. Magn. Res. 196, 142 (2009).

    Article  CAS  Google Scholar 

  26. K. Suekane, N. Furukawa, S. Tsushima, et al., J. Porous Media 12, 143 (2009).

    Article  CAS  Google Scholar 

  27. Y. C. Song, L. L. Jiang, Y. Liu, et al., Int. Greenhous Gas Control 110, 501 (2012).

    Article  Google Scholar 

  28. L. Tiphaine, M. Maja, B. Melanie, et al., Magn. Res. Imag. 30, 431 (2012).

    Article  Google Scholar 

  29. I. R. Young, J. W. H, and A. Oatridge, et al., Magn. Reson. Med. 32, 358 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanlan Jiang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Zhou, X., Song, Y. et al. An experiment study on fluid heat and mass transfer properties in porous media using MRI. Russ. J. Phys. Chem. 88, 2214–2219 (2014). https://doi.org/10.1134/S0036024414120176

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414120176

Keywords

Navigation