Skip to main content
Log in

Considering induced dipoles in a discrete model of a polar liquid

  • Theory of Atomic Molecular Processes
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The lattice gas model is generalized to describe the equilibrium distributions of polar solution components with allowance for Lennard-Jones and dipole-dipole potential interactions with constant and induced moments. It is shown that including induced dipoles potential results in an effective many-particle interaction potential, depending on the spatial distribution of solution components. The distributions of all solution components are calculated in a quasi-chemical approximation allowing for the spatial correlation of interacting particles. A procedure for reducing the dimensionality of a set of algebraic equations is considered, and expressions for vapor-liquid equilibrium isotherms are obtained. Expressions for the rates of elementary mono- and bimolecular chemical reactions are derived using the transition state theory in systems with induced dipoles for rapidly overcoming the activation barrier in the permanent state of solvent molecules’ atomic subsystems. Ways of considering the internal motions (vibrations, rotation, and displacements) of molecules in a polar liquid are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  2. Intermolecular Forces, Ed. by J. O. Hirschfelder, Advances in Chemical Physics (Interscience Publ., New York, 1967), Vol. 12.

    Google Scholar 

  3. I. G. Kaplan, Introduction to the Theory of Molecular Interactions (Nauka, Moscow, 1982).

    Google Scholar 

  4. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Clarendon Press, Oxford, 1984), Vol. 1.

    Google Scholar 

  5. Intermolecular Interactions: From Diatomics to Biopolymers, Ed. by B. Pullman (Wiley, 1978; Mir, Moscow, 1981).

    Google Scholar 

  6. Molecular Interactions, Ed. by H. Ratajczak and W. J. Orwill-Thomas (Wiley, New York, 1989; Mir, Moscow, 1984).

    Google Scholar 

  7. N. G. Bakhshiev, Spectroscopy of Intermolecular Interactions (Nauka, Leningrad, 1972) [in Russian].

    Google Scholar 

  8. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond (Mir, Moscow, 1964; Freeman, San Francisco, 1960).

    Google Scholar 

  9. N. A. Smirnova, Molecular Models of Solutions (Khimiya, Leningrad, 1987) [in Russian].

    Google Scholar 

  10. N. F. Stepanov and V. I. Pupyshev, Quantum Mechanics of Molecules and Quantum Chemistry (Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  11. G. M. Bell, J. Phys. C 5, 889 (1972).

    Article  CAS  Google Scholar 

  12. G. M. Bell and D. W. Salt, J. Chem. Soc.: Faraday Trans. 2 72, 76 (1976).

    CAS  Google Scholar 

  13. Yu. V. Shulepov and E. V. Aksenenko, Lattice Gas (Naukova dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  14. S. V. Titov and Yu. K. Tovbin, Russ. Chem. Bull. 60, 11 (2011).

    Article  CAS  Google Scholar 

  15. S. V. Titov and Yu. K. Tovbin, Russ. J. Phys. Chem. A 85, 185 (2011).

    Google Scholar 

  16. S. G. Entelis and R. P. Tiger, Reaction Kinetics in the Liquid Phase (Khimiya, Moscow, 1973) [in Russian].

    Google Scholar 

  17. E. A. Moelwin-Hughes, The Kinetics of Reactions in Solution (Oxford Univ., London, 1950; Khimiya, Moscow, 1975).

    Google Scholar 

  18. R. R. Dogonadze and A. M. Kuznetsov, in Results of Science and Engineerign. Kinetics and Catalysis (VINITI, Moscow, 1978), Vol. 5 [in Russian]

    Google Scholar 

  19. E. D. German and A. M. Kuznetsov, in Results of Science and Engineerign. Kinetics and Catalysis (VINITI, Moscow, 1982), Vol. 10, p. 115 [in Russian].

    Google Scholar 

  20. R. R. Dogonadze and T. A. Marsagishvili, Khim. Fiz. 7, 33 (1988).

    CAS  Google Scholar 

  21. Yu. K. Tovbin, Russ. J. Phys. Chem. A 70, 1655 (1996).

    Google Scholar 

  22. S. V. Titov and Yu. K. Tovbin, Russ. J. Phys. Chem. A 87, 185 (2013).

    Article  Google Scholar 

  23. Yu. K. Tovbin, Molecular Theory of Adsorption in Porous Bodies (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  24. Yu. K. Tovbin, Russ. J. Phys. Chem. A 80, 1554 (2006).

    Article  CAS  Google Scholar 

  25. B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).

    Article  CAS  Google Scholar 

  26. J. Dias da Silva, J. Brandao, and A. J. C. Varandas, J. Chem. Soc., Faraday Trans. 85, 1851 (1989).

    Article  CAS  Google Scholar 

  27. J. A. Barker, in Rare Gas Solids, Ed. by M. L. Klein and J. A. Venables (Academic, London, 1976), Vol. 1, p. 212.

  28. Yu. K. Tovbin, Zh. Fiz. Khim. 61, 2711 (1987).

    CAS  Google Scholar 

  29. Yu. K. Tovbin, Russ. J. Phys. Chem. A 86, 1212 (2012).

    Article  CAS  Google Scholar 

  30. A. Migus, Y. Gauduel, J. L. Martin, and A. Antonetti, Phys. Rev. Lett. 58, 1559 (1987).

    Article  CAS  Google Scholar 

  31. I. A. Misurkin and S. V. Titov, Russ. J. Phys. Chem. A 74, 1314 (2000).

    Google Scholar 

  32. I. A. Misurkin and S. V. Titov, Russ. J. Phys. Chem. A 73, 276 (1999).

    Google Scholar 

  33. I. A. Misurkin and S. V. Titov, Russ. J. Phys. Chem. A 74, 827 (2000).

    Google Scholar 

  34. I. A. Misurkin and S. V. Titov, Russ. J. Phys. Chem. A 78, 637 (2004).

    Google Scholar 

  35. I. A. Misurkin and S. V. Titov, Russ. J. Phys. Chem. A 79, 1799 (2005).

    CAS  Google Scholar 

  36. I. A. Misurkin and S. V. Titov, Russ. J. Phys. Chem. A 79, 84 (2005).

    CAS  Google Scholar 

  37. I. A. Misurkin and S. V. Titov, Russ. J. Phys. Chem. A 81, 204 (2007).

    Article  CAS  Google Scholar 

  38. I. A. Misurkin and S. V. Titov, Russ. J. Phys. Chem. A 81, 69 (2007).

    Article  CAS  Google Scholar 

  39. I. A. Misurkin and S. V. Titov, Russ. J. Phys. Chem. A 82, 1672 (2008).

    Article  CAS  Google Scholar 

  40. Yu. K. Tovbin and E. V. Votyakov, Russ. J. Phys. Chem. A 71, 214 (1997).

    Google Scholar 

  41. Yu. K. Tovbin and S. V. Titov, Russ. J. Phys. Chem. B 5, 1135 (2011).

    Article  CAS  Google Scholar 

  42. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

  43. P. Stampfli, J. Chem. Phys. 101, 6024 (1994).

    Article  CAS  Google Scholar 

  44. Yu. K. Tovbin, Zh. Fiz. Khim. 69, 118 (1995).

    CAS  Google Scholar 

  45. Yu. K. Tovbin, Zh. Fiz. Khim. 69, 214 (1995).

    CAS  Google Scholar 

  46. N. A. Smirnova, in Chemistry and Thermodynamics of Solutions (Len. Gos. Univ., Leningrad, 1968), No. 2, p. 8 [in Russian]; in Chemistry and Thermodynamics of Solutions (Len. Gos. Univ., Leningrad, 1982), No. 5, p. 87 [in Russian].

    Google Scholar 

  47. J. A. Barker and W. Fock, Disc. Faraday Soc., No. 15, 188 (1953).

    Google Scholar 

  48. G. A. Anderson and J. C. Wheeler, J. Chem. Phys. 69, 2082 (1978).

    Article  Google Scholar 

  49. J. C. Walker and C. A. Vause, Phys. Lett. A 79, 421 (1980).

    Article  Google Scholar 

  50. R. E. Goldstein and J. C. Walker, J. Chem. Phys. 78, 1492 (1983).

    Article  CAS  Google Scholar 

  51. J. C. Walker and C. A. Vause, J. Chem. Phys. 78, 2660 (1983).

    Article  Google Scholar 

  52. I. N. Godnev, Calculation of Thermodynamical Functions using Molecular Data (GITTL, Moscow, 1956) [in Russian].

    Google Scholar 

  53. Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas-Solid Interface (Nauka, Moscow, 1990; Mir, CRC, Moscow, Boca Raton, FL, 1991).

    Google Scholar 

  54. I. Z. Fisher, Statistical Theory of Liquids (Chicago Univ., Chicago, 1964; Fizmatgiz, Moscow, 1961).

    Google Scholar 

  55. C. Croxton, Liquid State Physics (Cambridge Univ., London, 1974; Mir, Moscow, 1979).

    Google Scholar 

  56. G. A. Martunov, Fundamental Theory of Liquids: Method of Distribution Functions (Adam Hilger, Bristol, 1992).

    Google Scholar 

  57. Yu. K. Tovbin, Zh. Fiz. Khim. 66, 1395 (1992).

    CAS  Google Scholar 

  58. Yu. K. Tovbin, Progress Surf. Sci. 34, 1 (1990).

    Article  CAS  Google Scholar 

  59. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (Van Nostrand, New York, 1941).

    Google Scholar 

  60. Yu. K. Tovbin, M. M. Senyavin, and L. K. Zhidkova, Russ. J. Phys. Chem. A 73, 245 (1999).

    Google Scholar 

  61. Yu. K. Tovbin, Russ. J. Phys. Chem. A 87, 1083 (2013).

    Article  CAS  Google Scholar 

  62. Yu. K. Tovbin, Khim. Fiz. 21(1), 83 (2002).

    CAS  Google Scholar 

  63. M. I. Ryazanov, Electrodynamics of Condenced Matter (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Original Russian Text © Yu.K. Tovbin, 2014, published in Zhurnal Fizicheskoi Khimii, 2014, Vol. 88, No. 11, pp. 1752–1765.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovbin, Y.K. Considering induced dipoles in a discrete model of a polar liquid. Russ. J. Phys. Chem. 88, 1932–1944 (2014). https://doi.org/10.1134/S0036024414110181

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414110181

Keywords

Navigation