Density functional study on the functionalization of BN nanotubes with nitramide

Abstract

Chemical functionalization of a boron nitride nanotube (BNNT) with nitramide molecule (H2NNO2) has been investigated using density functional theory. It was found that the molecule prefers to be adsorbed and dissociated on a diagonal B-N bond of the tube surface so that the -NH2 and -NO2 groups are attached on B and N atoms, releasing energy of 0.50 eV. The results show that the functionalized BNNT is more soluble than the pristine one which may render the chemical modification process to be an effective way for purification of the BNNTs. Depending on the cleavage behavior of nitramide on the tube, HOMO/LUMO gap of the system can be either decreased or increased while the chemically modified BNNT is still a semiconductor. Furthermore, the chemical functionalization results in hindered field emission in the tube by raising the potential barrier of the electron emission.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Iijima, Nature 354, 56 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    A. A. Kuzubov, M. N. Popov, A. S. Fedorov, and T. A. Kozhevnikova, Russ. J. Phys. Chem. A 82, 2117 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    N. I. Alekseev and N. A. Charykov, Russ. J. Phys. Chem. A 82, 2191 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    L. Liu, Y. Yang, and Y. Zhang, Physica E 24, 343 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    A. Ahmadi, J. Beheshtian, and N. L. Hadipour, Physica E 43, 1717 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    C. M. Lee, S. I. Choi, S. S. Choi, and S. H. Hong, Curr. Appl. Phys. 6, 166 (2006).

    Article  Google Scholar 

  7. 7.

    E. Bengu and L. D. Marks, Phys. Rev. Lett. 86, 2385 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    S. Pal, S. R. C. Vivekchand, A. Govindaraj, and C. N. R. Rao, J. Mater. Chem. 17, 450 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    M. Burghard, Surf. Sci. Rep. 58, 1 (2005).

    CAS  Google Scholar 

  10. 10.

    L. Meng, C. Fu, and Q. Lu, Prog. Natl. Sci. 19, 801 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    T. Ikuno, T. Sainsbury, D. Okawa, J. M. J. Frechet, and A. Zettl, Solid State Commun. 142, 643 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    X. Wu, W. An, and X. C. Zeng, J. Am. Chem. Soc. 128, 12001 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    X. J. Wu, J. L. Yang, J. G. Hou, and Q. S. Zhu, Phys. Rev. B 69, 153411 (2004).

    Article  Google Scholar 

  14. 14.

    H. J. Xiang, J. L. Yang, J. G. Hou, and Q. S. Zhu, Appl. Phys. Lett. 87, 243113 (2005).

    Article  Google Scholar 

  15. 15.

    Y. Li, Z. Zhou, and J. Zhao, Nanotechnology 19, 015202 (2008).

    Article  Google Scholar 

  16. 16.

    L. Wang, C. Yi, H. Zou, J. Xu, and W. Xu, Mater. Chem. Phys. 127, 232 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comp. Chem. 14, 1347 (1993).

    CAS  Article  Google Scholar 

  18. 18.

    S. Tomić, B. Montanari, and N. M. Harrison, Physica E 40, 2125 (2008).

    Article  Google Scholar 

  19. 19.

    Y. Yu, S. Yuan, J. Xu, and S. Wu, Russ. J. Phys. Chem. A 85, 1031 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    A. Ahmadi Peyghan, N. Hadipour, and Z. Bagheri, J. Phys. Chem. C 117, 2427 (2013).

    Article  Google Scholar 

  21. 21.

    L. S. Karpushenkava and G. Y. Kabo, Russ. J. Phys. Chem. 82, 1170 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    J. Andzelm and C. Kolmel, J. Chem. Phys. 103, 9312 (1995).

    CAS  Article  Google Scholar 

  23. 23.

    K. D. Bonin and V. V. Kresin, Electric-Dipole Polarizabilities of Atoms, Molecules, and Clusters (World Scientific, Singapore, 1997).

    Google Scholar 

  24. 24.

    E. Lewars, Computational Chemistry-Introduction to the Theory and Applications of Molecular and Quantum Mechanics (Kluwer Academic, Norwell, MA, 2003).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Noei.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kakemam, J., Noei, M. Density functional study on the functionalization of BN nanotubes with nitramide. Russ. J. Phys. Chem. 88, 1751–1756 (2014). https://doi.org/10.1134/S0036024414100161

Download citation

Keywords

  • boron nitride nanotube
  • density functional theory
  • adsorption