Skip to main content
Log in

One-pot, one-step, catalytic synthesis of 2,5-diformylfuran from fructose

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

MIL-101, a chromium-based metal-organic framework, is known for its very large pore size, large surface area and good stability. However, application of this material in catalysis is still limited. In this paper, a simple and practical catalytic method for the preparation 2,5-diformylfuran (DFF) directly from fructose was investigated. 5% Pd-V(3: 2)@MIL-101 was evaluated as a potential and effective catalyst for the direct oxidation of fructose. The amount of the catalyst, reaction time and temperature had a large effect on the reaction. At the optimized reaction conditions, when the reaction was conducted at 140°C for 600 min, 1 atm oxygen pressure, the yield of DFF reached 34%, fructose conversion was up to 100%. In our system, the main side products were 5-formyl-2-furancarboxylic acid (FFCA) and 2,5-furandicarboxylic acid (FDCA), which are the products of deep oxidation of DFF. This simple and effective catalytic system may be valuable to facilitate energy-efficient conversion of fructose into biofuels and platform chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Qi, M. Watanabe, T. M. Aida, and R. L. Smith, Jr., Green Chem. 10, 799 (2008).

    Article  CAS  Google Scholar 

  2. H. Zhao, J. E. Holladay, H. Brown, and Z. C. Zhang, Science 316, 1597 (2007).

    Article  CAS  Google Scholar 

  3. Q. Bao, K. Qiao, D. Tomida, and C. Yokoyama, Catal. Commun. 9, 1383 (2008).

    Article  CAS  Google Scholar 

  4. M. Bicker, J. Hirth, and H. Vogel, Green Chem. 5, 280 (2003).

    Article  CAS  Google Scholar 

  5. Ken-ichi Shimizu, R. Uozumi, and A. Satsuma, Catal. Commun. 10, 1849 (2009).

    Article  CAS  Google Scholar 

  6. A. Takagaki, M. Ohara, S. Nishimura, and K. Ebitani, Chem. Commun. 41, 6276 (2009).

    Article  Google Scholar 

  7. T. Ståhlberg, M. G. Sørensen, and A. Riisager, Green Chem. 12, 321 (2010).

    Article  Google Scholar 

  8. A. Gandini and M. N. Belgacem, Polym. Int. 47, 267 (1998).

    Article  CAS  Google Scholar 

  9. D. R. Gauthier, R. H. Szumigala, P. G. Dormer, J. D. Armstrong, R. P. Volante, and P. J. Reider, Org. Lett. 4, 375 (2002).

    Article  CAS  Google Scholar 

  10. K. T. Hopkins, W. D. Wilson, B. C. Bender, D. R. McCurdy, J. E. Hall, R. R. Tidwell, A. Kumar, M. Bajic, and D. W. Boykin, J. Med. Chem. 41, 3872 (1998).

    Article  CAS  Google Scholar 

  11. D. W. Sheibley, M. A. Manzo, and O. D. Gonzalez-Sanabria, J. Electrochem. Soc. 130, 255 (1983).

    Article  CAS  Google Scholar 

  12. H. C. Anderson, US Patent No. 4043320 (1982).

  13. C. Moreau, R. Durand, C. Porcheron, and D. Tichit, Stud. Surf. Sci. Catal. 108, 399 (1997).

    Article  CAS  Google Scholar 

  14. G. Durand, P. Faugeras, F. Laporte, C. Moreau, M. C. Neau, G. Roux, D. Tichit, and C. Toutremepuich, WO Patent no. 9836617 (1996).

  15. G. A. Halliday, R. J. Young, and V. V. Grushin, Org. Lett. 5, 2003 (2003).

    Article  CAS  Google Scholar 

  16. C. Carlini, P. Patrono, A. M. Raspolli, G. Sbrana, and V. Zima, Appl. Catal. A: Gen. 289, 197 (2005).

    Article  CAS  Google Scholar 

  17. J. Ma, Z. Du, J. Xu, Q. Chu, and Y. Pang, ChemSus-Chem. 4, 51 (2011).

    Article  CAS  Google Scholar 

  18. Y. Pan, B. Yuan, Y. Li, and D. He, Chem. Commun. 46, 2280 (2010).

    Article  CAS  Google Scholar 

  19. J. Kim, S. Bhattacharjee, K. E. Jeong, S. Y. Jeong, and W. S. Ahn, Chem. Commun. 45, 3904 (2009).

    Article  Google Scholar 

  20. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki, Science 309, 2040 (2005).

    Article  Google Scholar 

  21. N. V. Maksimchuk, M. N. Timofeeva, M. S. Melgunov, A. N. Shmakov, Y. A. Chesalov, D. N. Dybtsev, V. P. Fedin, and O. A. Kholdeeva, J. Catal. 257, 315 (2008).

    Article  CAS  Google Scholar 

  22. M. Sabo, A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, J. Mater. Chem. 17, 3827 (2007).

    Article  CAS  Google Scholar 

  23. M. Dubois, K. A. Gilles, and F. Smith, Anal. Chem. 28, 350 (1956).

    Article  CAS  Google Scholar 

  24. C. Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren, and Z. M. Su, J. Am. Chem. Soc. 131, 1883 (2009).

    Article  CAS  Google Scholar 

  25. H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, and O. M. Yaghi, Nature 427, 523 (2004).

    Article  CAS  Google Scholar 

  26. O. C. Navarro, A. C. Canós, and S. I. Chornet, Top. Catal. 52, 304 (2009).

    Article  CAS  Google Scholar 

  27. G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, and I. Margiolaki, Science 309, 2040 (2005).

    Article  CAS  Google Scholar 

  28. Furong Tao, Huanling Song, and Lingjun Chou, RSC Adv. 1, 672 (2011).

    Article  CAS  Google Scholar 

  29. Furong Tao, Huanling Song, and Lingjun Chou, Carbohydr. Polym. 85, 363 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furong Tao.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, F., Cui, Y., Yang, P. et al. One-pot, one-step, catalytic synthesis of 2,5-diformylfuran from fructose. Russ. J. Phys. Chem. 88, 1091–1096 (2014). https://doi.org/10.1134/S0036024414070152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414070152

Keywords

Navigation