Abstract
Present paper reports the measured densities (ρ) and refractive indices (n D) of aqueous solutions of Duloxetine drug in wide range of molal concentrations (m = 0.0101–0.1031 mol kg−1) and at different temperatures (297.15, 302.15, and 307.15 K). Apparent molar volumes (φv) of drug were calculated from density data and fitted to Masson’s relation \((\phi _\nu = \phi _\nu ^0 + S_\nu ^* \sqrt c )\) and partial molar volumes (φ 0v ) were evaluated at different temperatures. Concentration dependence of refractive index (n D = Kc + n 0D ) at experimental temperature has been studied. Density and refractive index data has been used for the calculation of specific refractions (R D). Experimental (ρ and n D) and calculated (φv, φ 0v , and R D) properties have been interpreted in terms of concentration and temperature effects on structural fittings and drug-water interactions.
This is a preview of subscription content, access via your institution.
References
C. Klofutar, J. Horvat, and D. Rudan-Tasic, Acta Chem. Slov. 53, 274 (2006).
H. Kumar and K. Kaur, J. Chem. Eng. 58, 203 (2013).
M. Iqbal and R. E. Verrall, Can. J. Chem. 67, 727 (1989).
A. Zielenkiewicz, B. Golankiewicz, and W. Zielenkiewicz, J. Solution Chem. 30, 575 (2001).
V. R. Shaikh, D. H. Dagade, D. G. Hundiwale, and K. J. Patil, J. Mol. Liq. 164, 239 (2011).
P. Sharma, S. Chauhan, V. K. Syal, and M. S. Chauhan, Int. J. Thermophys. 29, 643 (2008).
M. Iqbal, M. Asghar-Jamal, M. Ahmed, and B. Ahmed, Can. J. Chem. 72, 1076 (1994).
S. D. Deosarkar, M. L. Narwade, and V. V. Pandhare, Chem. Sci. Trans. 2, 37 (2013).
S. D. Deosarkar, V. V. Pandhare, and P. S. Kattekar, J. Eng. 2013, 1 (2013).
S. D. Deosarkar, H. G. Jahagirdar, and V. B. Talwatkar, Rasayan J. Chem. 3, 755 (2010).
S. D. Deosarkar and M. L. Narwade, Rasayan J. Chem. 3, 55 (2010).
S. D. Deosarkar, A. L. Puyad, P. S. Kattekar, and T. M. Kalyankar, Russ. J. Phys. Chem. A 87, 524 (2013).
S. D. Deosarkar, Russ. J. Phys. Chem. A 86, 1507 (2012).
S. D. Deosarkar, A. L. Puyad, and T. M. Kalyankar, Russ. J. Phys. Chem. A 86, 775 (2012).
S. D. Deosarkar and T. M. Kalyankar, Russ. J. Phys. Chem. A 87, 1060 (2013).
W. M. B. M. Yunus and A. B. A. Rahman, Appl. Opt. 27, 3341 (1998).
F. Koohyar, A. A. Rostami, M. J. Chaich, and F. Kiani, J. Solution Chem. 40, 1361 (2011).
M. N. Roy, B. Sinha, R. Dey, and A. Sinha, Int. J. Thermophys. 26, 1549 (2005).
P. C. Dey, M. A. Motin, T. K. Biswas, and E. M. Huque, Monatsh Chem. 134, 797 (2003).
D. O. Masson, Philos. Mag. 8, 218 (1929).
D. Choudhary and A. Aswar, J. Therm. Anal. Calorim. 107, 21 (2012).
B. Sinha, A. Sarkar, P. K. Roy, and D. Brahman, Int. J. Thermophys. 32, 2062 (2011).
P. S. Nikam, R. P. Shewale, A. B. Sawant, and M. Hasan, J. Chem. Eng. 50, 487 (2005).
M. N. Roy, A. Banerjee, and P. K. Roy, Int. J. Thermophys. 30, 515 (2009).
L. H. Blanco, Y. P. Salamanca, and E. F. Vargas, J. Chem. Eng. 53, 2770 (2008).
D. R. Delgado, E. F. Vargas, and F. Martínez, J. Solution Chem. 40, 1955 (2011).
Author information
Authors and Affiliations
Corresponding author
Additional information
The article is published in the original.
Rights and permissions
About this article
Cite this article
Deosarkar, S.D., Deoraye, S.M. & Kalyankar, T.M. Temperature and concentration dependences of density and refraction of aqueous duloxetine solutions. Russ. J. Phys. Chem. 88, 1129–1132 (2014). https://doi.org/10.1134/S0036024414070139
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0036024414070139
Keywords
- molecular interactions
- drug-solvent interactions
- duloxetine
- apparent molar volume