Skip to main content

Temperature and concentration dependences of density and refraction of aqueous duloxetine solutions

Abstract

Present paper reports the measured densities (ρ) and refractive indices (n D) of aqueous solutions of Duloxetine drug in wide range of molal concentrations (m = 0.0101–0.1031 mol kg−1) and at different temperatures (297.15, 302.15, and 307.15 K). Apparent molar volumes (φv) of drug were calculated from density data and fitted to Masson’s relation \((\phi _\nu = \phi _\nu ^0 + S_\nu ^* \sqrt c )\) and partial molar volumes (φ 0v ) were evaluated at different temperatures. Concentration dependence of refractive index (n D = Kc + n 0D ) at experimental temperature has been studied. Density and refractive index data has been used for the calculation of specific refractions (R D). Experimental (ρ and n D) and calculated (φv, φ 0v , and R D) properties have been interpreted in terms of concentration and temperature effects on structural fittings and drug-water interactions.

This is a preview of subscription content, access via your institution.

References

  1. C. Klofutar, J. Horvat, and D. Rudan-Tasic, Acta Chem. Slov. 53, 274 (2006).

    CAS  Google Scholar 

  2. H. Kumar and K. Kaur, J. Chem. Eng. 58, 203 (2013).

    CAS  Google Scholar 

  3. M. Iqbal and R. E. Verrall, Can. J. Chem. 67, 727 (1989).

    Article  CAS  Google Scholar 

  4. A. Zielenkiewicz, B. Golankiewicz, and W. Zielenkiewicz, J. Solution Chem. 30, 575 (2001).

    Article  CAS  Google Scholar 

  5. V. R. Shaikh, D. H. Dagade, D. G. Hundiwale, and K. J. Patil, J. Mol. Liq. 164, 239 (2011).

    Article  CAS  Google Scholar 

  6. P. Sharma, S. Chauhan, V. K. Syal, and M. S. Chauhan, Int. J. Thermophys. 29, 643 (2008).

    Article  CAS  Google Scholar 

  7. M. Iqbal, M. Asghar-Jamal, M. Ahmed, and B. Ahmed, Can. J. Chem. 72, 1076 (1994).

    Article  CAS  Google Scholar 

  8. S. D. Deosarkar, M. L. Narwade, and V. V. Pandhare, Chem. Sci. Trans. 2, 37 (2013).

    Google Scholar 

  9. S. D. Deosarkar, V. V. Pandhare, and P. S. Kattekar, J. Eng. 2013, 1 (2013).

    Article  Google Scholar 

  10. S. D. Deosarkar, H. G. Jahagirdar, and V. B. Talwatkar, Rasayan J. Chem. 3, 755 (2010).

    CAS  Google Scholar 

  11. S. D. Deosarkar and M. L. Narwade, Rasayan J. Chem. 3, 55 (2010).

    CAS  Google Scholar 

  12. S. D. Deosarkar, A. L. Puyad, P. S. Kattekar, and T. M. Kalyankar, Russ. J. Phys. Chem. A 87, 524 (2013).

    Article  CAS  Google Scholar 

  13. S. D. Deosarkar, Russ. J. Phys. Chem. A 86, 1507 (2012).

    Article  CAS  Google Scholar 

  14. S. D. Deosarkar, A. L. Puyad, and T. M. Kalyankar, Russ. J. Phys. Chem. A 86, 775 (2012).

    Article  CAS  Google Scholar 

  15. S. D. Deosarkar and T. M. Kalyankar, Russ. J. Phys. Chem. A 87, 1060 (2013).

    Article  CAS  Google Scholar 

  16. W. M. B. M. Yunus and A. B. A. Rahman, Appl. Opt. 27, 3341 (1998).

    Article  Google Scholar 

  17. F. Koohyar, A. A. Rostami, M. J. Chaich, and F. Kiani, J. Solution Chem. 40, 1361 (2011).

    Article  CAS  Google Scholar 

  18. M. N. Roy, B. Sinha, R. Dey, and A. Sinha, Int. J. Thermophys. 26, 1549 (2005).

    Article  CAS  Google Scholar 

  19. P. C. Dey, M. A. Motin, T. K. Biswas, and E. M. Huque, Monatsh Chem. 134, 797 (2003).

    Article  CAS  Google Scholar 

  20. D. O. Masson, Philos. Mag. 8, 218 (1929).

    CAS  Google Scholar 

  21. D. Choudhary and A. Aswar, J. Therm. Anal. Calorim. 107, 21 (2012).

    Article  CAS  Google Scholar 

  22. B. Sinha, A. Sarkar, P. K. Roy, and D. Brahman, Int. J. Thermophys. 32, 2062 (2011).

    Article  CAS  Google Scholar 

  23. P. S. Nikam, R. P. Shewale, A. B. Sawant, and M. Hasan, J. Chem. Eng. 50, 487 (2005).

    CAS  Google Scholar 

  24. M. N. Roy, A. Banerjee, and P. K. Roy, Int. J. Thermophys. 30, 515 (2009).

    Article  CAS  Google Scholar 

  25. L. H. Blanco, Y. P. Salamanca, and E. F. Vargas, J. Chem. Eng. 53, 2770 (2008).

    CAS  Google Scholar 

  26. D. R. Delgado, E. F. Vargas, and F. Martínez, J. Solution Chem. 40, 1955 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Deosarkar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deosarkar, S.D., Deoraye, S.M. & Kalyankar, T.M. Temperature and concentration dependences of density and refraction of aqueous duloxetine solutions. Russ. J. Phys. Chem. 88, 1129–1132 (2014). https://doi.org/10.1134/S0036024414070139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414070139

Keywords

  • molecular interactions
  • drug-solvent interactions
  • duloxetine
  • apparent molar volume