Skip to main content
Log in

Sensor properties of the nanostructured In2O3-CeO2 system in detection of reducing gases

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The sensor properties of nanostructured In2O3-CeO2 composite films with different compositions in hydrogen and carbon monoxide detection in air in the temperature range 280–500°C were studied. The temperature curves of the sensor effect S have a shape typical for metal oxide sensors with maxima S max at definite temperatures Tmax. The maxima characterize the sensor properties of the films and increased considerably when small amounts of CeO2 were added to In2O3. The highest sensitivity was found in composite films with 3–10 wt % CeO2. When the composite was further enriched with ceric oxide, the sensitivity decreased; at 40 wt % CeO2 it was considerably lower than that of pure In2O3. The introduction of CeO2 in In2O3 also caused a shift of Tmax toward lower temperatures. The mechanism of the sensitivity of the In2O3-CeO2 composite was considered; it includes the promotion of sensor reactions by small CeO2 nanoclusters lying on the surface of In2O3 crystals and an electron transfer from In2O3 to CeO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).

    Article  CAS  Google Scholar 

  2. N. Yamazoe and K. Shimanoe, Sens. Actuators B 128, 566 (2008).

    Article  CAS  Google Scholar 

  3. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., in Chemical Sensors: Simulation and Modeling, Ed. by G. Korotcenkov (Momentum, New York, 2012), pp. 261–296.

  4. W. J. Moon, J. H. Yu, and C. G. Man, Sens. Actuators B 87, 464 (2002).

    Article  CAS  Google Scholar 

  5. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B 169, 32 (2012).

    Article  CAS  Google Scholar 

  6. K.-W. Kim, P.-S. Cho, S.-J. Kim, et al., Sens. Actuators B 123, 318 (2007).

    Article  CAS  Google Scholar 

  7. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B (in press).

  8. G. N. Gerasimov, V. F. Gromov, T. V. Belysheva, and L. I. Trakhtenberg, Russ. J. Phys. Chem. A 87, 1731 (2013).

    Article  CAS  Google Scholar 

  9. L. Xu, H. Song, B. Dong, et al., Inorg. Chem. 49, 10590 (2010).

    Article  CAS  Google Scholar 

  10. C. Binet, A. Badri, and J.-C. Lavalley, J. Phys. Chem. 98, 6392 (1994).

    Article  CAS  Google Scholar 

  11. A. Badri, C. Binet, and J.-C. Lavalley, J. Chem. Soc., Faraday Trans. 92, 4669 (1996).

    Article  CAS  Google Scholar 

  12. I. Kosacki, T. Suzuki, H. U. Anderson, and Ph. Colomban, Solid State Ionics 149, 99 (2002).

    CAS  Google Scholar 

  13. C. Ge, C. Xie, and S. Cai, Mater. Sci. Eng. B 137, 53 (2007).

    Article  CAS  Google Scholar 

  14. J. Fang, X. Bi, D. Si, et al., Appl. Surf. Sci. 253, 8952 (2007).

    Article  CAS  Google Scholar 

  15. N. Yamazoe and K. Shimanoe, Thin Solid Films 517, 6148 (2009).

    Article  CAS  Google Scholar 

  16. A. L. Efros, The Physics and the Geometry of Disorder (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  17. L. I. Trakhtenberg, G. N. Gerasimov, and E. I. Grigor’ev, Russ. J. Phys. Chem. A 73, 209 (1999).

    Google Scholar 

  18. N. Savage, B. Chwieroth, A. Ginwalla, et al., Sens. Actuators B 79, 17 (2001).

    Article  CAS  Google Scholar 

  19. M. A. Kozhushner, V. L. Bodneva, and L. I. Trakhtenberg, Russ. J. Phys. Chem. A 86, 1281 (2012).

    Article  CAS  Google Scholar 

  20. M. A. Kozhushner, L. I. Trakhtenberg, A. C. Landerville, and I. I. Oleynik, J. Phys. Chem. C 117, 11562 (2013).

    Article  CAS  Google Scholar 

  21. S. Bernal, J. J. Calvino, G. A. Cifredo, and J. M. Rodriguez-Izquierdo, J. Phys. Chem. 99, 11794 (1995).

    Article  CAS  Google Scholar 

  22. S. Ahlers, G. Muller, and T. Doll, Sens. Actuators B 107, 587 (2005).

    Article  CAS  Google Scholar 

  23. T. V. Belysheva, V. F. Gromov, G. N. Gerasimov, and L. I. Trakhtenberg, Russ. J. Phys. Chem. A 84, 2116 (2010).

    Article  CAS  Google Scholar 

  24. C. Malagù, M. C. Carotta, A. Giberti, et al., Sens. Actuators B 136, 230 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Gerasimov.

Additional information

Original Russian Text © G.N. Gerasimov, V.F. Gromov, L.I. Trakhtenberg, T.V. Belysheva, E.Yu. Spiridonova, V.M. Rozenbaum, 2014, published in Zhurnal Fizicheskoi Khimii, 2014, Vol. 88, No. 3, pp. 495–501.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, G.N., Gromov, V.F., Trakhtenberg, L.I. et al. Sensor properties of the nanostructured In2O3-CeO2 system in detection of reducing gases. Russ. J. Phys. Chem. 88, 503–508 (2014). https://doi.org/10.1134/S0036024414030066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414030066

Keywords

Navigation