Skip to main content
Log in

Detection of trace amounts of Pb(II) by schiff base-chitosan-grafted multiwalled carbon nanotubes

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A simple, highly sensitive, accurate and selective method for determination of trace amounts of Pb(II) in water samples is presented. A novel Schiff base-chitosan-grafted multiwalled carbon nanotubes (S-CS-MWCNTs) solid-phase extraction adsorbent was synthesized by covalently grafting a Schiff base-chitosan (S-CS) onto the surfaces of oxidized MWCNTs. The stability of a chemically (S-CS-MWCNTs) especially in concentrated hydrochloric acid which was then used as a recycling and preconcentration reagent for further uses of (S-CS-MWCNTs). The method is based on selective chelation of Pb(II) on surfactant coated C18, modified with a Schiff base-chitosan-grafted multiwalled carbon nanotubes (S-CS-MWCNTs). The retained ions were then eluted with 4 mL of 4 M nitric acid and determined by flame atomic absorption spectrometry (FAAS) at 283.3 nm for Pb. The influence of flow rates of sample and eluent solutions, pH, break-through volume, effect of foreign ions on chelation and recovery were investigated. 1.5 g of surfactant coated C18 adsorbs 40 mg of the Schiff s base which in turn can retain 15.0 ± 0.9 mg of each of the two ions. The limit of detection (3σ) for Pb(II) was found to be 3.20 ng L−1. The enrichment factor for both ions are 100. The mentioned method was successfully applied on determination of lead in different water samples. The ions were also speciated by means of three columns system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Luoma, Sci. Total Environ. 28, 1 (1983).

    Article  CAS  Google Scholar 

  2. U. Forstner and G. T. W. William, Metal Pollution in the Aquatic Environment (Springer, Berlin, 1983).

    Google Scholar 

  3. R. E. Kirk and D. F. Othmer, Encyclopedia of Chemical Technology, 3rd ed. (Wiley, New York, 1979), Vol. 14.

    Google Scholar 

  4. L. Parmeggiani, Encyclopedia of Occupational Health and Safety, 3rd ed. (International Labor Organization, Geneva, 1983), Vol. 1.

    Google Scholar 

  5. Y. S. Choi and H. S. Choi, Bull. Korean Chem. Soc. 24, 222 (2003).

    Article  CAS  Google Scholar 

  6. L. Zaijan, Y. Yuling, T. Jian, and P. Jiaomai, Talanta 60, 123 (2003).

    Article  Google Scholar 

  7. D. Kara, M. Alkan, and U. Cakir, Turk. J. Chem. 25, 293 (2001).

    CAS  Google Scholar 

  8. S. B. Sonawale, Y. V. Ghalsasi, and A. P. Argekar, Anal. Sci. 17, 285 (2001).

    Article  CAS  Google Scholar 

  9. M. C. T. Diniz, O. F. Filho, and J. J. R. Rohwedder, Anal. Chim. Acta 525, 281 (2004).

    CAS  Google Scholar 

  10. J. L. Manzoori and A. Bavili-Tabrizi, Microchem. J. 72, 1 (2002).

    Article  CAS  Google Scholar 

  11. J. Chen and K. C. Teo, Anal. Chim. Acta 450, 215 (2001).

    Article  CAS  Google Scholar 

  12. S. Yuan, W. Chen, and S. Hu, Talanta 64, 922 (2004).

    Article  CAS  Google Scholar 

  13. R. E. Majors, LC-GC 4, 972 (1989).

    Google Scholar 

  14. D. F. Hagen, C. G. Markell, G. A. Schmitt, and D. D. Blevins, Anal. Chim. Acta 236, 157 (1990).

    Article  CAS  Google Scholar 

  15. V. A. Lemos, P. X. Baliza, R. T. Yamaki, M. E. Rocha, and A. P. O. Alves, Talanta 61, 675 (2003).

    Article  Google Scholar 

  16. N. Tokman, S. Akman, and M. Ozcan, Talanta 59, 201 (2003).

    Article  CAS  Google Scholar 

  17. E. Castillo, J. L. Cortina, J. L. Beltran, M. D. Prat, and M. Granados, Analyst 126, 1149 (2001).

    Article  CAS  Google Scholar 

  18. M. Zougagh, A. G. D. Torres, E. V. Alonso, and J. M. C. Povon, Talanta 62, 503 (2004).

    Article  CAS  Google Scholar 

  19. E. Matoso, L. T. Kubota, and S. Cadore, Talanta 60, 1105 (2003).

    Article  CAS  Google Scholar 

  20. O. R. Hashemi, M. Razi Kargar, F. Raoufi, A. Moghimi, H. Aghabozorg, and M. R. Ganjali, Microchem. J. 62, 1 (2001).

    Article  Google Scholar 

  21. M. Groschner and P. Appriou, Anal. Chim. Acta 297, 369 (1994).

    Article  CAS  Google Scholar 

  22. B. L. Lewis and W. M. Landing, Mar. Chem. 40, 105 (1992).

    Article  CAS  Google Scholar 

  23. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis, 5th ed. (Saunders College, 1998).

    Google Scholar 

  24. P. Nayebi and A. Moghimi, Orient. J. Chem. 22, 507 (2006).

    CAS  Google Scholar 

  25. A. Moghimi, Orient. J. Chem. 22, 527 (2006).

    CAS  Google Scholar 

  26. J. L. Manzoori, M. H. Sorouraddin, and A. M. Haji Shabani, J. Anal. At. Spectrom, 13, 305 (1998).

    Article  CAS  Google Scholar 

  27. M. Hiraide and J. Hori, Anal. Sci. 15, 1055 (1999).

    Article  CAS  Google Scholar 

  28. M. Calligaris and R. Randaccio, in Comprehensive Coordination Chemistry, Ed. by G. Wilkinson, R. D. Gillard, and J. A. McCleverty (Pergamon, Oxford, London, 1987), Ch. 20.

  29. D. A. Alwood, Coord. Chem. Rev. 195, 267 (1997).

    Google Scholar 

  30. H. Jeffery, Chemical Analysis, 5th ed. (Wiley, New York, 1991).

    Google Scholar 

  31. O. Abollino, M. Aceto, C. Sarzanini, and E. Mentasti, Anal. Chim. Acta 411, 233 (2000).

    Article  Google Scholar 

  32. D. Bingye, C. Meirong, F. Guozhen, L. Bing, D. Xv, P. Mingfei, and W. Shuo, J. Hazard. Mater. 219–220, 103 (2012).

    Google Scholar 

  33. I. Dilovic, M. Rubcic, V. Vrdoljak, S. K. Pavelic, M. Kralj, I. Piantanidab, and M. Cindrica, Bioorg. Med. Chem. 16, 518 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Moghimi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghimi, A. Detection of trace amounts of Pb(II) by schiff base-chitosan-grafted multiwalled carbon nanotubes. Russ. J. Phys. Chem. 87, 1203–1209 (2013). https://doi.org/10.1134/S0036024413070388

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024413070388

Keywords

Navigation