Skip to main content
Log in

Variational RRKM theory calculation of thermal rate constant for carbon—hydrogen bond fission reaction of nitro benzene

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The present work provides quantitative results for the rate of unimolecular carbon-hydrogen bond fission reaction of benzene and nitro benzene at elevated temperatures up to 2000 K. The potential energy surface for each C-H (in the ortho, meta, and para sites) bond fission reaction of nitro benzene was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C-H bond fission channel is barrier less reaction, we have used variational RRKM theory to predict rate constants. By means of calculated rate constant at the different temperatures, the activation energy and exponential factor were determined. The Arrhenius expression for C-H bond fission reaction of nitro benzene on the ortho, meta and para sites are k(T) = 2.1 × 1017exp(−56575.98/T), k(T) = 2.1 × 1017exp(−57587.45/T), and k(T) = 3.3 × 1016exp(−57594.79/T) respectively. The Arrhenius expression for C-H bond fission reaction of benzene is k(T) = 2 × 1018exp(−59343.48.18/T). The effect of NO2 group, location of hydrogen atoms on the substituted benzene ring, reaction degeneracy, benzene ring resonance and tunneling effect on the rate expression have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Hu, T. J. He, D. M. Chen, et al., J. Phys. Chem. A 106, 7294 (2002).

    Article  CAS  Google Scholar 

  2. W. M. Wei, W. Tan, R. H. Zheng, et al., Chem. Phys. 312, 241 (2005).

    Article  CAS  Google Scholar 

  3. W. M. Wei, W. Tan, T. J. He, et al., Chin. J. Chem. Phys. 17, 679 (2004).

    CAS  Google Scholar 

  4. W. M. Wei, R. H. Zheng, Y. Tian, et al., Acta Phys. Chim. Sin. 53, 22 (2006).

    Google Scholar 

  5. X. Zhang, R. Kan, Y. Liu, et al., Chin. J. Chem. Phys. 17, 561 (2004).

    CAS  Google Scholar 

  6. Wen-mei Wei, Ren-hui Zheng, Yan Tian, et al., Chin. J. Chem. Phys. 20(2), 27 (2007).

    Article  Google Scholar 

  7. R. Ma, D. Yuan, M. Chen, and M. Zhou, J. Phys. Chem. A 113, 1250 (2009).

    Article  CAS  Google Scholar 

  8. S. Contreras, M. Rodryguez, E. Chamarro, and S. Esplugas, J. Photochem. Photobiol. A 142, 79 (2001).

    Article  CAS  Google Scholar 

  9. M. Rodriguez, V. Timokhin, F. Michl, et al., Catal. Today 76, 291 (2002).

    Article  CAS  Google Scholar 

  10. Y. Mu, H. Q. Yu, J. C. Zheng, et al., Chemosphere 54, 789 (2004).

    Article  CAS  Google Scholar 

  11. J. C. Spain, Ann. Rev. Microbiol. 49, 523 (1995).

    Article  CAS  Google Scholar 

  12. G. Russell and A. Bemis, Inorg. Chem. 6, 403 (1967).

    Article  CAS  Google Scholar 

  13. J. Gross, J. Barnes, and J. Brown, J. Appl. Chem. 20, 162 (1970).

    Article  CAS  Google Scholar 

  14. See NIST Website.

  15. W. Zierkiewicz, L. Komorowski, D. Michalska, J. Cerny, and P. Hobza, J. Phys. Chem. B 112, 16734 (2008).

    Article  CAS  Google Scholar 

  16. Yun Ding, Ye Mei, and John Z. H. Zhang, J. Phys. Chem. B 112, 11396 (2008).

    Article  CAS  Google Scholar 

  17. J. A. Beukes, B. DiAnna, V. Bakken, and C. J. Nielsen., Phys. Chem. Chem. Phys. 2, 4049 (2000).

    Article  CAS  Google Scholar 

  18. A. Jagielska and J. Skolnick, J. Comput. Chem. 28, 1648 (2007).

    Article  CAS  Google Scholar 

  19. D. Vijay, H. Sakurai, and G. Narahari Sastry, Int. J. Quantum Chem. 111, 1893 (2011).

    Article  CAS  Google Scholar 

  20. Shaowen Zhang, Hung N. Nguyen, and Thanh N. Truong, J. Phys. Chem. A 107, 2981(2003).

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  22. T. Beyer and D. F. Swinehart, Commun. Assoc. Comput. Machin. 16, 379 (1973).

    Google Scholar 

  23. S. E. Stein and B. S. Rabinovitch, J. Chem. Phys. 58, 2438 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Taghva Manesh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manesh, A.T., Heidarnezhad, Z.a. & Masnabadi, N. Variational RRKM theory calculation of thermal rate constant for carbon—hydrogen bond fission reaction of nitro benzene. Russ. J. Phys. Chem. 87, 1175–1179 (2013). https://doi.org/10.1134/S0036024413070376

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024413070376

Keywords

Navigation