Skip to main content
Log in

Hydrogen bond lifetime for water in classic and quantum molecular dynamics

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The lifetime of hydrogen bonds in water at T = 298 K and p = 0.1 MPa is computed by means of classic molecular dynamics with eight different potentials of pair lifetime interaction and Car-Parinello molecular dynamics. The results obtained using various computational techniques for hydrogen bond life-times are compared. It is shown that they can differ from one another by several times. The dependence for the hydrogen bond lifetime computed in our numerical experiment upon the method of its determination is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Luzar, Faraday Disc. Chem. Soc. 103, 29 (1996).

    CAS  Google Scholar 

  2. V. P. Voloshin and Yu. I. Naberukhin, J. Struct. Chem. 50, 78 (2009).

    Article  CAS  Google Scholar 

  3. S. Yeremenko, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 369, 107 (2003).

    Article  CAS  Google Scholar 

  4. C. J. Montrose, J. A. Bucaro, J. Marshall-Coakley, and T. A. Litovitz, J. Chem. Phys. 60, 5025 (1974).

    Article  CAS  Google Scholar 

  5. O. Conde and J. Teixeira, J. Phys. 44, 525 (1983).

    Article  CAS  Google Scholar 

  6. M. Nakahara, N. Matubayasi, Ch. Wakai, and Y. Tsujino, J. Mol. Phys. 90, 75 (2001).

    CAS  Google Scholar 

  7. U. Kaatze, Subs. Sens. Techn. Appl. 1, 377 (2000).

    Article  Google Scholar 

  8. V. Arkhipov and A. Yu. Zavidonov, J. Mol. Liq. 106, 155 (2003).

    Article  CAS  Google Scholar 

  9. H.-K. Nienhuys, S. Woutersen, R. A. van Santen, and H. J. Bakker, J. Chem. Phys. 111, 1494 (1999).

    Article  CAS  Google Scholar 

  10. F. H. Stillinger, Adv. Chem. Phys. 31, 1 (1975).

    Article  CAS  Google Scholar 

  11. D. C. Rapaport, Mol. Phys. 50, 1151 (1983).

    Article  CAS  Google Scholar 

  12. D. A. Zichi and P. J. Rossky, J. Chem. Phys. 84, 2814 (1986).

    Article  CAS  Google Scholar 

  13. J. A. Padro, L. Saiz, and E. Guardia, J. Mol. Struct., No. 416, 243 (1997).

    Google Scholar 

  14. E. Guardia, J. Marti, J. A. Padro, et al., J. Mol. Liq. 96–97, 3 (2002).

    Article  Google Scholar 

  15. S. Saito and I. Ohmine, J. Chem. Phys. 102, 3566 (1995).

    Article  CAS  Google Scholar 

  16. G. G. Malenkov and D. L. Tytik, Method of Molecular Dynamics in Physical Chemistry, Ed. by Yu. K. Tovbin (Nauka, Moscow, 1996), p. 204 [in Russian].

  17. G. G. Malenkov, M. M. Frank-Kamenetskii, and A. G. Grivtsov, Zh. Strukt. Khim. 28(2), 81 (1987).

    CAS  Google Scholar 

  18. V. V. Voloshin, G. G. Malenkov, and Yu. I. Naberukhin, J. Struct. Chem. 48, 1066 (2007).

    Article  CAS  Google Scholar 

  19. F. W. Starr, J. K. Nielsen, and H. E. Stanley, Phys. Rev. Lett. 82, 2294 (1999).

    Article  CAS  Google Scholar 

  20. F. W. Starr, J. K. Nielsen, and H. E. Stanley, Phys. Rev. E 62, 579 (2000).

    Article  CAS  Google Scholar 

  21. A. Luzar and D. Chandler, J. Chem. Phys. 98, 8160 (1993).

    Article  CAS  Google Scholar 

  22. A. Luzar, J. Chem. Phys. 113, 10663 (2000).

    Article  CAS  Google Scholar 

  23. H. Xu and B. J. Berne, J. Phys. Chem. B 105, 11929 (2001).

    Article  CAS  Google Scholar 

  24. H. Xu, H. A. Stern, and B. J. Berne, J. Phys. Chem. B 106, 2054 (2002).

    Article  CAS  Google Scholar 

  25. P. Liu, E. Harder, and B. J. Berne, J. Phys. Chem. B 109, 2949 (2005).

    Article  CAS  Google Scholar 

  26. S. Chowdhuri and A. Chandra, Phys. Rev. E 66, 041203 (2002).

    Article  Google Scholar 

  27. A. Chandra, Proc. Ind. Nat. Sci. Acad. A 69, 49 (2003).

    Google Scholar 

  28. Y.-S. Lee and M. E. Tuckerman, J. Chem. Phys. 26, 164501 (2007).

    Article  Google Scholar 

  29. S. Han, P. Kumar, and H. E. Stanley, Phys. Rev. E 79, 041202 (2009).

    Article  Google Scholar 

  30. M. J. McGrath, J. I. Siepman, I.-F. Kuo, et al., J. Phys. Chem. A 110, 640 (2006).

    Article  CAS  Google Scholar 

  31. D. Bertolini, M. Cassetari, M. Ferrario, et al., J. Chem. Phys. 81, 6214 (1984).

    Article  Google Scholar 

  32. D. Bertolini, M. Cassettari, M. Ferrario, et al., Adv. Chem. Phys. 62, 277 (1985).

    Article  CAS  Google Scholar 

  33. A. Geiger, P. Mausbach, J. Schnnitker, et al., J. Phys. (Paris) 45(Suppl. C7), 13 (1984).

    Google Scholar 

  34. S. Pratihar and A. Chandra, J. Chem. Phys. 134, 024519 (2011).

    Article  Google Scholar 

  35. F.-X. Coudert, R. Vuilleumier, and A. Boutin, Eur. J. Chem. Phys. Phys. Chem. 7, 2464 (2006).

    Article  CAS  Google Scholar 

  36. P. Kumar, A. G. Kalinichev, and R. J. Kirkpatrick, J. Phys. Chem. B 113, 794 (2009).

    Article  CAS  Google Scholar 

  37. T. D. Kühne, M. Krack, and M. Parrinello, J. Chem. Theory Comput. 5, 235 (2009).

    Article  Google Scholar 

  38. F. Sciortino, P. H. Poole, H. E. Stanley, and S. Halvin, Phys. Rev. Lett. 64, 1686 (1990).

    Article  CAS  Google Scholar 

  39. J. Marti, J. A. Padro, and E. Guardia, J. Chem. Phys. 105, 639 (1996).

    Article  CAS  Google Scholar 

  40. S. Paul and A. Chandra, Chem. Phys. Lett. 386, 218 (2004).

    Article  CAS  Google Scholar 

  41. S. Chowdhuri and A. Chandra, J. Chem. Phys. 124, 084507 (2006).

    Article  Google Scholar 

  42. R. Gupta and A. Chandra, J. Chem. Phys. 128, 184506 (2008).

    Article  Google Scholar 

  43. N. Yoshii, S. Miura, and S. Okazaki, Bull. Chem. Soc. Jpn. 72, 151 (1999).

    Article  CAS  Google Scholar 

  44. E. Apol, R. Apostolov, and H. J. C. Berendsen, GRO-MACS 4.5.4 (Sweden, 2001–2010); www.gromacs.org.

    Google Scholar 

  45. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  CAS  Google Scholar 

  46. J. Hutter, A. Alavi, T. Deutch, et al., CPMD, MPI für Festkörperforschung and IBM Zurich Research Laboratory (Stuttgart, 1995–1999).

    Google Scholar 

  47. I.-F. Kuo, W. Mundy, C. J. McGrath, et al., J. Phys. Chem. 108, 12990 (2004).

    CAS  Google Scholar 

  48. S. Izvekov and G. A. Voth, J. Chem. Phys. 116, 10372 (2002).

    Article  CAS  Google Scholar 

  49. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, in Intermolecular Forces, Ed. by B. Pullman (Reidel, Dordrecht, 1981).

  50. S.-B. Zhu, S. Singh, and G. W. Robinson, Adv. Chem. Phys. 85, 627 (1993).

    CAS  Google Scholar 

  51. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

    Article  CAS  Google Scholar 

  52. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  53. M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000).

    Article  CAS  Google Scholar 

  54. V. E. Petrenko, M. L. Antipova, and A. V. Borovkov, J. Mol. Liq. 120, 19 (2005).

    Article  CAS  Google Scholar 

  55. M. L. Antipova, Candidate’s Dissertation in Chemistry (Inst. Khim. Rastvorov RAN, Ivanovo, 2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Petrenko.

Additional information

Original Russian Text © M.L. Antipova, V.E. Petrenko, 2013, published in Zhurnal Fizicheskoi Khimii, 2013, Vol. 87, No. 7, pp. 1196–1201.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antipova, M.L., Petrenko, V.E. Hydrogen bond lifetime for water in classic and quantum molecular dynamics. Russ. J. Phys. Chem. 87, 1170–1174 (2013). https://doi.org/10.1134/S0036024413070030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024413070030

Keywords

Navigation