Skip to main content
Log in

Cubical equations of state for predicting the phase equilibria of poorly studied substances

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A new procedure for determining the coefficients of the Peng-Robinson equation of state is proposed, for which a minimum of information is required. It is shown that using the Morachevskii complexity factor of molecular interaction in the algorithm for calculating the saturation vapor pressure of substances enables us to study the parameters of the vapor-liquid equilibria of substances with various polarities. Based on our validation of the procedure for determining the coefficients of the Ping-Robinson equation, it is concluded that the values for the saturation vapor pressure of halide derivatives of hydrocarbons calculated from tabular reference data agree satisfactorily in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Zhelezny, Yu. V. Semenyuk, S. N. Ancerbak, et al., J. Fluorine Chem., No. 128, 1029 (2007).

    Google Scholar 

  2. Yu. Semenyuk, V. Zhelezny, D. Ivchenko, et al., in Proceedings of the 23rd International Congress of Refrigeration, Aug. 21–26, 2011 (Prague, Czech Rep., 2011), p. 78 (ID:191).

    Google Scholar 

  3. V. Zhelezny, Yu. Semenyuk, T. Lozovsky, et al., in Proceedings of the 23rd International Congress of Refrigeration, Aug. 21–26, 2011 (Prague, Czech Rep., 2011), p. 80 (ID:195).

    Google Scholar 

  4. P. V. Zhelezny, V. P. Zhelezny, D. A. Procenko, et al., Int. J. Refrig. 30, 433 (2007).

    Article  CAS  Google Scholar 

  5. M. S. Fonseca, R. Dohrn, and S. Peper, Fluid Phase Equilib. 288, 1 (2010).

    Article  Google Scholar 

  6. S. Walas, Phase Equilibria in Chemical Technology (Butterworth-Heinemann, Boston, London, Oxford, UK, 1985; Mir, Moscow, 1989), Chs. 1, 2.

    Google Scholar 

  7. D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Process Des. Dev., No. 15, 59 (1976).

    Google Scholar 

  8. J. J. Martin, Ind. Eng. Chem. Fundam. 18(2), 81 (1979).

    Article  CAS  Google Scholar 

  9. G. Schmidt and H. Wenzel, Chem. Eng. Sci., No. 35, 1503 (1980).

    Google Scholar 

  10. A. Harmens and H. Knapp, Ind. Eng. Chem. Fundam., No. 19, 291 (1980).

    Google Scholar 

  11. N. C. Patel and A. S. Teja, Chem. Eng. Sci., No. 37, 463 (1982).

    Google Scholar 

  12. A. Vetere, Chem Eng. J., No. 49, 27 (1992).

    Google Scholar 

  13. A. W. Adamson and A. P. Gast, Physical Chemistry of Surface (Wiley-Interscience, Toronto, 1997; Mir, Moscow, 1979).

    Google Scholar 

  14. T. L. Lozovskii, Yu. V. Semenyuk, D. A. Ivchenko, et al., Khol. Tekh. Tekhnol., No. 6, 38 (2009).

    Google Scholar 

  15. Yu. V. Kalinovskii, A. V. Mineev, and A. I. Ponomarev, Neftegaz. Delo 4, 293 (2006).

    Google Scholar 

  16. S. V. Artemenko, Khol. Tekh. Tekhnol., No. 2, 19 (2009).

    Google Scholar 

  17. A. Yokozeki, Int. J. Thermophys., No. 22, 1057 (2001).

    Google Scholar 

  18. M. Teodorescu, L. Lugo, and J. Fernandez, Int. J. Thermophys., No. 24, 1043 (2003).

    Google Scholar 

  19. V. P. Zhelezny, in Proceedings of the NATO Advanced Research Workshop on Nonlinear Dielectric Phenomena in Complex Liquids, Jaszowiec-Ustron, Poland, May 10–14, 2003, Ed. by S. J. Rzoska and V. P. Zhelezny, p. 163.

  20. V. P. Zhelezny, V. V. Sechenykh, Yu. V. Semenyuk, et al., Khol. Tekh. Tekhnol., No. 2, 8 (2011).

    Google Scholar 

  21. G. G. Petrik, Monitoring. Nauka Tekhnol., No. 1, 45 (2009).

    Google Scholar 

  22. E. W. Lemmon, M. O. McLinden, and M. L. Huber, NIST Standard Reference Database (National Institute of Standards and Technology, 2002).

    Google Scholar 

  23. I. B. Sladkov, Zh. Fiz. Khim. 56, 2412 (1982).

    CAS  Google Scholar 

  24. A. G. Morachevskii and I. B. Sladkov, Physicochemical Properties of Molecular Inorganic Compounds (Experimental Data and Calculation Methods), The Handbook (Khimiya, St. Petersburg, 1996) [in Russian].

    Google Scholar 

  25. A. G. Morachevskii and I. B. Sladkov, Thermodynamical Calculations in Metallurgy (Metallurgiya, Moscow, 1985) [in Russian].

    Google Scholar 

  26. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Shestova.

Additional information

Original Russian Text © T.D. Shestova, A.S. Markvart, T.L. Lozovskii, V.P. Zheleznyi, 2013, published in Zhurnal Fizicheskoi Khimii, 2013, Vol. 87, No. 6, pp. 905–911.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shestova, T.D., Markvart, A.S., Lozovskii, T.L. et al. Cubical equations of state for predicting the phase equilibria of poorly studied substances. Russ. J. Phys. Chem. 87, 883–889 (2013). https://doi.org/10.1134/S0036024413060253

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024413060253

Keywords

Navigation