Skip to main content
Log in

Adsorption model of atomic hydrogen on the surfaces of carbon nanotubes

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A model for the adsorption of atomic hydrogen on the surfaces of single-walled zig-zag and armchair carbon nanotubes is constructed on the basis of the single-impurity periodic Anderson model. Features of the bands caused by the adsorption of hydrogen atoms in the structure of carbon nanotubes are studied. A reduction in the forbidden gap as a result of adsorption is revealed, and its dependence on the diameter of the semiconducting nanotubes is established. It is concluded that the model can be used to study the adsorption of other monovalent atoms on the surfaces of carbon particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Bol’shov, A. P. Napartovich, A. G. Naumovets, and A. G. Fedorus, Sov. Phys. Usp. 20, 432 (1977).

    Article  Google Scholar 

  2. P. W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  CAS  Google Scholar 

  3. P. Harris, Carbon Nanotubes and Related Structures. New Materials for the Twenty-First Century (Cambridge Univ., New York, 1999; Tekhnosfera, Moscow, 2003).

    Book  Google Scholar 

  4. Yu. A. Izyumov, I. I. Chashchin, and D. S. Alekseev, A Generating-Functional Approach in the Theory of Magnetic and Strongly Correlated Systems (Regular. Khaotich. Dinamika, Moscow, Izhevsk, 2006) [in Russian].

    Google Scholar 

  5. S. Yu. Davydov and S. V. Troshin, Phys. Solid State 49, 1583 (2007).

    Article  CAS  Google Scholar 

  6. S. Yu. Davydov, G. I. Sabirova, Tech. Phys. Lett. 36, 1154 (2010).

    Article  CAS  Google Scholar 

  7. M. B. Belonenko, N. G. Lebedev, and N. N. Yanyushkina, Phys. Solid State 52, 1780 (2010).

    Article  CAS  Google Scholar 

  8. N. N. Yanyushkina, M. B. Belonenko, and N. G. Lebedev, Mater. Sci. Appl. 1, 72 (2010).

    CAS  Google Scholar 

  9. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (2nd ed., Nauka, Moscow, 1975; Plenum Press, New York, 1967).

    Google Scholar 

  10. N. F. Stepanov, Quantum Mechanics and Quantum Chemistry (Mir, Moscow, 2001) [in Russian].

    Google Scholar 

  11. N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskii, Int. J. Quantum. Chem. 96, 149 (2004).

    Article  Google Scholar 

  12. N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskii, Fulleren. Nanotubes Carbon Nanostruct. 12, 443 (2004).

    Article  CAS  Google Scholar 

  13. N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskii, Int. J. Quantum. Chem. 100, 548 (2004).

    Article  CAS  Google Scholar 

  14. O. Guelseren, T. Yildirim, and S. Ciraci, Phys. Rev. B 66, 121401 (2002).

    Article  Google Scholar 

  15. F. H. Yang and R. T. Yang, Carbon 40, 437 (2002).

    Article  CAS  Google Scholar 

  16. J. W. Mintmire and C. T. White, Carbon 33, 893 (1993).

    Article  Google Scholar 

  17. O. B. Tomilin and E. E. Muryumin, Phys. Solid State 46, 605 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pak.

Additional information

Original Russian Text © A.V. Pak, N.G. Lebedev, 2013, published in Zhurnal Fizicheskoi Khimii, 2013, Vol. 87, No. 6, pp. 995–1000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pak, A.V., Lebedev, N.G. Adsorption model of atomic hydrogen on the surfaces of carbon nanotubes. Russ. J. Phys. Chem. 87, 979–984 (2013). https://doi.org/10.1134/S0036024413060204

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024413060204

Keywords

Navigation