Advertisement

Russian Journal of Physical Chemistry A

, Volume 87, Issue 1, pp 100–103 | Cite as

Features of the sorption of water vapor and nitrogen on cellulose

  • Yu. B. GruninEmail author
  • L. Yu. Grunin
  • E. A. Nikol’skaya
  • V. I. Talantsev
  • G. Sh. Gogelashvili
Physical Chemistry of Surface Phenomena

Abstract

Molecular-kinetic parameters of adsorptives, i.e., water (at 300 K) and nitrogen (at 77 K) vapors, are calculated and compared at the initial steps of their adsorption by cellulose. The role of the dipole structure of water molecules is considered upon their interaction with active centers of cellulose, forming heterogeneous electric fields in its pores. The effect of the temperature of the adsorptive and the sizes of its molecules on activation penetration through narrowings of the micropores dominant in absolutely dry cellulose due to the mobility of its structure is determined. The development of a porous system upon water adsorption is demonstrated according to 1H NMR. It is concluded that low-temperature nitrogen adsorption on cellulose yields rather limited information on its structure and adsorption properties.

Keywords

cellulose supramolecular structure adsorption adsorbent adsorptive dipole structure nuclear magnetic resonance (NMR) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. A. Rogovin, Chemistry of Cellulose (Moscow, 1972) [in Russian].Google Scholar
  2. 2.
    N. I. Klenkova, Structure and Reactivity of Cellulose (Leningrad, 1976) [in Russian].Google Scholar
  3. 3.
    Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan, J. Am. Chem. Soc. 125, 14300 (2003).CrossRefGoogle Scholar
  4. 4.
    Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc. 24, 9074 (2002).CrossRefGoogle Scholar
  5. 5.
    S. F. Grebennikov, A. T. Kynin, and O. D. Grebennikova, Zh. Prikl. Khim. 57, 2114 (1985).Google Scholar
  6. 6.
    S. A. Kuvshinnikova, K. P. Mishchenko, and S. L. Talmud, in Problems of Physicochemical Mechanics of Fiber and Porous Disperse Structures and Materials, Ed. by P. A. Rebinder (Zinatne, Riga, 1967), p. 265 [in Russian].Google Scholar
  7. 7.
    Yu. B. Grunin, L. Yu. Grunin, E. A. Nikol’skaya, and V. I. Talantsev, Butlerov. Soobshch. 20(6), 35 (2010).Google Scholar
  8. 8.
    Yu. B. Grunin, L. Yu. Grunin, and E. A. Nikol’skaya, Russ. J. Phys. Chem. A 81, 1165 (2007).CrossRefGoogle Scholar
  9. 9.
    I. V. Savel’ev, Course on Physics, Vol. 1: Mechanics. Molecular Physics (Lan’, St. Petersburg, 2007) [in Russian].Google Scholar
  10. 10.
    S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, London, 1982; Mir, Moscow, 1984).Google Scholar
  11. 11.
    H. Ono, M. Ynamoto, and K. Okajima, Cellulose 4, 57 (1997).CrossRefGoogle Scholar
  12. 12.
    A. A. Baker, W. Helbert, J. Sugiyama, and M. J. Miles, Biophys. J. 79, 1139 (2000).CrossRefGoogle Scholar
  13. 13.
    I. E. Tamm, Fundamentals of Theory of Electricity, 8th ed. (Nauka, Moscow, 1966) [in Russian].Google Scholar
  14. 14.
    A. R. Urquhart, in Recent Advances in Chemistry of Cellulose and Starch, Ed. by J. Honeyman (Heywood, London, 1959; Inostr. Lit., Moscow, 1962).Google Scholar
  15. 15.
    J. Leisen, H. W. Beckham, and M. Benham, Solid State Nucl. Magn. Reson. 22, 409 (2002).CrossRefGoogle Scholar
  16. 16.
    S. V. Potapov, Extended Abstract of Candidate’s Dissertation in Technical Science (Frumkin Inst. Phys. Chem. Electrochem., Moscow, 2011).Google Scholar
  17. 17.
    S. V. Potapov, A. A. Fomkin, V. A. Sinitsyn, A. V. Shkolin, and A. L. Pulin, Prot. Met. Phys. Chem. Surf. 46, 519 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Yu. B. Grunin
    • 1
    Email author
  • L. Yu. Grunin
    • 1
  • E. A. Nikol’skaya
    • 1
  • V. I. Talantsev
    • 1
  • G. Sh. Gogelashvili
    • 1
  1. 1.Mari State Technical UniversityYoshkar-OlaRussia

Personalised recommendations