Skip to main content
Log in

Study of complexation process between 4′-nitrobenzo-15-crown-5 and yttrium(III) cation in binary mixed non-aqueous solvents using conductometric method

  • Colloid Chemistry and Electrochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The complexation reaction of macrocyclic ligand (4′-nitrobenzo-15C5) with Y3+ cation was studied in acetonitrile-methanol (AN-MeOH), acetonitrile-ethanol (AN-EtOH), acetonitrile-dimethylformamide (AN-DMF) and ethylacetate-methanol (EtOAc-MeOH) binary mixtures at different temperatures using conductometry method. The conductivity data show that in all solvent systems, the stoichiometry of the complex formed between 4′-nitrobenzo-15C5 and Y3+ cation is 1: 1 (ML). The stability order of (4′-nitrobenzo-15C5). Y3+ complex in pure non-aqueous solvents at 25°C was found to be: EtOAc > EtOH > AN ≈ DMF > MeOH, and in the case of most compositions of the binary mixed solvents at 25°C it was: AN≈MeOH ≈ AN-EtOH > AN-DMF > EtOAc-MeOH. But the results indicate that the sequence of the stability of the complex in the binary mixed solutions changes with temperature. A non-linear behavior was observed for changes of logK f of (4′-nitrobenzo-15C5 · Y3+) complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions and also the hetero-selective solvation of the species involved in the complexation reaction. The values of thermodynamic parameters (ΔH c and ΔS c ) for formation of the complex were obtained from temperature dependent of the stability constant using the van′t Hoff plots. The results represent that in most cases, the complex is both enthalpy and entropy stabilized and the values and also the sign of thermodynamic parameters are influenced by the nature and composition of the mixed solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Pedersen, J. Am. Chem. Soc. 89, 2495 (1967).

    Article  CAS  Google Scholar 

  2. G. Ekmekci, D. Uzun, G. Somer, and S. Kalayci, J. Memb. Sci. 288, 36 (2007).

    Article  CAS  Google Scholar 

  3. S. Chandra, R. Buschbeck, and H. Lang, Talanta 70, 1087 (2006).

    Article  CAS  Google Scholar 

  4. S. Chandra and H. Lang, Sens. Actuators, Ser. B 114, 849 (2006).

    Article  Google Scholar 

  5. V. K. Gupta, M. Al. Khayat, A. K. Minocha, and P. Kumar, Anal. Chim. Acta. 532, 153 (2005).

    Article  CAS  Google Scholar 

  6. S. Kim, H. Kim, K. H. Noh, et al., Talanta 61, 709 (2003).

    Article  CAS  Google Scholar 

  7. N. Rawat, P. K. Mohapatra, D. S. Lakshmi, et al., J. Memb. Sci. 275, 82 (2006).

    Article  CAS  Google Scholar 

  8. N. Malcik, N. Tunoglu, P. Caglar, and G. E. Wnek, Sens. Actuators, Ser. B 53, 204 (1998).

    Article  Google Scholar 

  9. S. Seyhan and Y. Tu, Tetrahedron 17, 1700 (2006).

    Article  CAS  Google Scholar 

  10. B. Saad, C. C. Chong, A. S. M. Ali, et al., Anal. Chim. Acta. 555, 146 (2006).

    Article  CAS  Google Scholar 

  11. H. Heitzman, B. A. Young, D. J. Rausch, et al., Talanta 69, 527 (2006).

    Article  CAS  Google Scholar 

  12. K. Nakamura, S. Nishiyama, S. Tsuruya, and M. Masai, J. Mol. Catal. 93, 195 (1994).

    Article  CAS  Google Scholar 

  13. G. H. Rounaghi, N. Khazaee, and R. K. Sanavi, J. Inclusion Phenom. Macrocyclic Chem. 79, 1143 (2005).

    CAS  Google Scholar 

  14. G. H. Rounaghi, R. K. Sanavi, and M. Arbab Zavvar, J. Inclusion Phenom. Macrocyclic Chem. 54, 247(2006).

  15. H. J. Schneider and A.Yatsimirsky (John Wiley & Sons Inc., Chichester, 2000).

  16. Y. Takeda, K. Katsuta, Y. Inoue, and T. Hakushi, Bull. Chem. Soc. Jpn. 61, 627 (1988).

    Article  CAS  Google Scholar 

  17. H. J. Buschmann, R. C. Mutihac, and E. Schollmeyer, Thermochim. Acta 472, 17 (2008).

    Article  CAS  Google Scholar 

  18. M. J. Oshaghani, M. B. Gholiv, and F. Ahmadi, Spectrochim. Acta, Part A 70, 1073 (2008).

    Article  Google Scholar 

  19. M. Rahimi Nasrabadi, F. Ahmadi, S. M. Pourmortazavi, et al., J. Mol. Liquids 144, 97 (2009).

    Article  Google Scholar 

  20. J. M. Barthel, H. Krienke, and W. Kunze (Springer, Darmstadt/Steinkopff/New York, 1988), Vol. 5, p. 128.

  21. Genplot, A Data Analysis and Graphical Plotting Program for Scientist and Engineers (Computer Graphic Service, Ltd., Ithaca, New York, USA, 1989).

    Google Scholar 

  22. G. H. Rounaghi, Z. Eshaghi, and E. Ghiamati, Talanta 44, 275 (1997).

    Article  CAS  Google Scholar 

  23. P. D. J. Grootenhuis and P.A. Kollman, J. Am. Chem. Soc. 111, 4046 (1989).

    Article  CAS  Google Scholar 

  24. P. A. Mosier-Boss, Spectrochimica Acta, Part A 61, 527 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Rounaghi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habibi, N., Rounaghi, G.H. & Mohajeri, M. Study of complexation process between 4′-nitrobenzo-15-crown-5 and yttrium(III) cation in binary mixed non-aqueous solvents using conductometric method. Russ. J. Phys. Chem. 86, 2018–2023 (2012). https://doi.org/10.1134/S0036024412130109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024412130109

Keywords

Navigation