Skip to main content
Log in

Simulating the ultrathin layer structure of dichloromethane on a solid substrate by means of density functional theory and molecular dynamics

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Calculations and a comparison analysis of the density profiles of an ultrathin layer of dichloromethane on three types of solid flat substrates are performed using the functional density and atomistic molecular dynamics approaches. The efficiency of using these techniques as mutually complementary ways of describing the structural properties of nanosized surface layers is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Shimomura and T. Sawadaishi, Curr. Opinion Colloid Interface Sci. 6, 11 (2001).

    Article  CAS  Google Scholar 

  2. M. Ma, Z. He, J. Yang, et al., Langmuir 27, 1056 (2011).

    Article  CAS  Google Scholar 

  3. D. D. Brewer, T. Shibuta, L. Francis, et al., Langmuir 27, 11660 (2011).

    Article  CAS  Google Scholar 

  4. V. I. Roldugin, Physicochemistry of a Surface (Intellekt, Dolgoprudnyi, 2008) [in Russian].

    Google Scholar 

  5. A. M. Tolmachev, Sorbtsion. Khromatogr. Protsessy 9(1), 5 (2009).

    Google Scholar 

  6. R. Evans, Density Functionals in the Theory of Nonuniform Liquids, in Fundamentals of Inhomogeneous Fluids, Ed. by D. Henderson (Dekker, New York, 1992).

    Google Scholar 

  7. J. Wu, AIChE J. 52, 1169 (2006).

    Article  CAS  Google Scholar 

  8. P. Tarazona, Phys. Rev. A 31, 2672 (1985).

    Article  CAS  Google Scholar 

  9. Y. Rosenfeld, M. Schmidt, H. Lowen, and P. Tarazona, Phys. Rev. E 55, 4245 (1997).

    Article  CAS  Google Scholar 

  10. Y.-X. Yu and J. Wu, J. Chem. Phys. 117, 10156 (2002).

    Article  CAS  Google Scholar 

  11. Methods of Computer Simulation for Study of Polymers and Biopolymers, Ed. by V. A. Ivanov, A. L. Rabinovich, and A. R. Khokhlov (Librokom, Moscow, 2009) [in Russian].

    Google Scholar 

  12. Yu. Ya. Gotlib, N. K. Balabaev, A. A. Darinskii, and I. M. Neelov, Macromolecules 13, 602 (1980).

    Article  CAS  Google Scholar 

  13. N. K. Balabaev, A. L. Rabinovich, and P. O. Ripatti, Biofizika 39, 312 (1994).

    CAS  Google Scholar 

  14. I. A. Ronova, E. M. Rozhkov, A. Yu. Alentiev, and Y. P. Yampolskii, Macromolecules 35, 2129 (2002).

    Article  Google Scholar 

  15. L. I. Manevich and A. V. Savin, Polymer Sci., Ser. A 47, 789 (2005).

    Google Scholar 

  16. P. V. Komarov, Y.-T. Chiu, S.-M. Chen, et al., Macromolecules 40, 8104 (2007).

    Article  CAS  Google Scholar 

  17. P. V. Komarov, Y.-T. Chiu, S.-M. Chen, and P. Reineker, Macromol. Theory Simul. 19, 64 (2010).

    CAS  Google Scholar 

  18. N. K. Balabaev, M. A. Mazo, A. V. Lyulin, and E. F. Oleinik, Polymer Sci., Ser. A 52, 633 (2010).

    Article  Google Scholar 

  19. Q. H. Zenga, A. B. Yua, and G. Q. Lu, Prog. Polym. Sci. 33, 191 (2008).

    Article  Google Scholar 

  20. K. E. Gubbins and J. D. Moore, Ind. Eng. Chem. Res. 49, 3026 (2010).

    Article  CAS  Google Scholar 

  21. M. G. Martin, Fluid Phase Equilib. 248, 50 (2006).

    Article  CAS  Google Scholar 

  22. D. Case, T. Darden, T. Cheatham III, et al., AMBER 10 (Univ. of California, San Francisco, 2008).

    Google Scholar 

  23. H. Sun, Macromolecules 28, 701 (1995).

    Article  CAS  Google Scholar 

  24. H. Sun, J. Phys. Chem. B 102, 7338 (1998).

    Article  CAS  Google Scholar 

  25. V. A. Harmandaris and A. V. Lyulin, et al., Macromol. Theory Simul. 17, 393 (2008).

    Article  Google Scholar 

  26. V. A. Harmandaris and K. Kremer, Macromolecules 42, 791 (2009).

    Article  CAS  Google Scholar 

  27. P. V. Komarov, I. N. Veselov, and P. G. Khalatur, Polymer Sci., Ser. A 52, 191 (2010).

    Article  Google Scholar 

  28. D. J. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).

    Article  CAS  Google Scholar 

  29. F. van Swol and J. R. Henderson, Phys. Rev. A 40, 2567 (1989).

    Article  Google Scholar 

  30. J. K. Johnson, J. A. Zollweg, and K. E. Gubbins, Mol. Phys. 78, 591 (1993).

    Article  CAS  Google Scholar 

  31. W. A. Steele, Surf. Sci. 36, 317 (1973).

    Article  CAS  Google Scholar 

  32. D. V. Matyushov and R. Schmid, J. Chem. Phys. 104, 8627 (1996).

    Article  CAS  Google Scholar 

  33. CRC Handbook of Chemistry and Physics, Ed. by D. R. Lide (Taylor and Francis, Boca Raton, FL, 2009).

    Google Scholar 

  34. A. A. Lopatkin, Fundamentals of Physical Adsorption (Mosk. Gos. Univ., Moscow, 1983) [in Russian].

    Google Scholar 

  35. E. A. Ustinov, Langmuir 24, 6668 (2008).

    Article  CAS  Google Scholar 

  36. S.-P. Ju, W.-J. Lee, and C.-H. Cheng, Langmuir 23, 8067 (2007).

    Article  CAS  Google Scholar 

  37. W. Smith and T. R. Forester, J. Mol. Graph. 14, 136 (1996).

    Article  CAS  Google Scholar 

  38. M. Svard and A. C. Rasmuson, Ind. Eng. Chem. Res. 48, 2899 (2009).

    Article  CAS  Google Scholar 

  39. A. E. Ismail, G. S. Grest, D. R. Heine, et al., Macromolecules 42, 3186 (2009).

    Article  CAS  Google Scholar 

  40. L. Garrido, J. Pozuelo, M. Lopez-Gonzalez, et al., Macromolecules 42, 6572 (2009).

    Article  CAS  Google Scholar 

  41. R. Toth, D.-J. Voorn, J.-W. Handgraaf, et al., Macromolecules 42, 8260 (2009).

    Article  CAS  Google Scholar 

  42. G. D. Zartman, H. Liu, B. Akdim, et al., J. Phys. Chem. C 114, 1763 (2010).

    Article  CAS  Google Scholar 

  43. P. V. Komarov, I. N. Veselov, P. P. Chu, et al., Chem. Phys. Lett. 487, 291 (2010).

    Article  CAS  Google Scholar 

  44. A. Ahmadi, C. McBride, J. J. Freire, et al., J. Phys. Chem. A 115, 12017 (2011).

    Article  CAS  Google Scholar 

  45. L. Scheres, B. Rijksen, M. Giesbers, and H. Zuilhof, Langmuir 27, 972 (2011).

    Article  CAS  Google Scholar 

  46. Y.-T. Fu, G. D. Zartman, M. Yoonessi, et al., J. Phys. Chem. 115, 22292 (2011).

    CAS  Google Scholar 

  47. F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zubkov.

Additional information

Original Russian Text © V.V. Zubkov, P.V. Komarov, 2012, published in Zhurnal Fizicheskoi Khimii, 2012, Vol. 86, No. 7, pp. 1226–1232.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubkov, V.V., Komarov, P.V. Simulating the ultrathin layer structure of dichloromethane on a solid substrate by means of density functional theory and molecular dynamics. Russ. J. Phys. Chem. 86, 1109–1115 (2012). https://doi.org/10.1134/S0036024412070357

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024412070357

Keywords

Navigation