Skip to main content
Log in

Reaction reversibility in α-pinene thermal isomerization: improving the kinetic model

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Revision of the experimental data on α-pinene thermal isomerization attained in supercritical ethanol allowed us to expand the reaction scheme, which includes now six main products and eleven reversible reactions. The equilibrium constants of every reaction (K T, j and K Φ, j) were calculated to allow for reversibility of reactions. The thermochemical data of the pure compounds required to calculate constants K T, j and K Φ, j (standard enthalpy and entropy of formation Δf H° (298.15 K), Δf S° (298.15 K), heat capacity C p (T), critical parameters T cr and p cr, boiling point T b, and the acentric factor ω) were preliminary estimated using the empirical Joback and Benson methods. A kinetic model based on the new expanded scheme of reversible reactions was successfully identified and its kinetic parameters k j (600 K) and E j were determined. Detailed examination of the new kinetic model allowed us to refine the generally accepted mechanism of α-pinene thermal isomerization and to distinguish additional features of the multistep process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yermakova, A. M. Chibiryaev, I. V. Kozhevnikov, et al., Chem. Eng. Sci. 62, 2414 (2007).

    Article  CAS  Google Scholar 

  2. S. G. Traynor, K. J. Crowley, and W. Cocker, Tetrahedron 34, 2783 (1978).

    Article  Google Scholar 

  3. K. G. Joback and R. C. Reid, Chem. Eng. Commun. 57, 233 (1987).

    Article  CAS  Google Scholar 

  4. B. I. Lee and M. G. Kesler, AIChE J. 21, 510 (1975).

    Article  CAS  Google Scholar 

  5. D. Ambrose and J. Walton, Pure Appl. Chem. 61, 1395 (1989).

    Article  CAS  Google Scholar 

  6. S. W. Benson, F. R. Cruickshank, D. M. Golden, et al., Chem. Rev. 69, 279 (1969).

    Article  CAS  Google Scholar 

  7. S. W. Benson, Thermochemical Kinetics, 2nd ed (Wiley, New York, 1976).

    Google Scholar 

  8. N. Cohen and S. W. Benson, Chem. Rev. 93, 2419 (1993).

    Article  CAS  Google Scholar 

  9. J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of Organic Compounds, Ed. by J. B. Pedley, 2nd ed. (Chapman and Hall, London, New York, 1986).

    Google Scholar 

  10. G. Ya. Kabo, G. N. Roganov, and Z. A. Filippenko, Zh. Fiz. Khim. 61, 2885 (1987).

    CAS  Google Scholar 

  11. I. V. Garist, S. V. Petrova-Kuminskaya, G. N. Roganov, et al., Zh. Fiz. Khim. 74, 397 (2000) [Russ. J. Phys. Chem. A 74, 327 (2000)].

    CAS  Google Scholar 

  12. G. F. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations, Prentice Hall Professional Technical Reference (Prentice Hall Englewood Cliffs, NJ, 1977).

    Google Scholar 

  13. A. M. Chibiryaev, A. Yermakova, and I. V. Kozhevnikov, J. Supercrit. Fluids 51, 295 (2010).

    Article  CAS  Google Scholar 

  14. Handbook of Chemistry and Physics, Ed. by D. R. Lide, 81st ed. (CRC Press,, Raton Boca, FL, 2000).

    Google Scholar 

  15. Handbook of Data on Organic Compounds, Ed. by D. R. Lide and G. W. A. Milne, 3nd ed. (CRC Press, Boca Raton, FL, 1993).

    Google Scholar 

  16. Aldrich Catalog/Handbook of Fine Chemicals (Aldrich Chemical Company, Milwaukee, WI, 1990).

  17. W. V. Steele, R. D. Chirico, A. B. Cowell, et al., J. Chem. Eng. Data 47, 667 (2002).

    Article  CAS  Google Scholar 

  18. Experimental Data, www.reaxys.com.

  19. I. I. Bardyshev and L. A. Popova, Rus. J. Org. Chem. 30, 1026 (1994).

    Google Scholar 

  20. C. M. Williams and D. Whittaker, J. Chem. Soc. B: Phys. Org., 668 (1971).

  21. B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th ed. (McGraw-Hill, New York, 2004).

    Google Scholar 

  22. S. I. Sandler, Chemical, Biochemical, and Engineering Thermodynamics, 4th ed. (Wiley, New York, 2006).

    Google Scholar 

  23. G. Soave, Chem. Eng. Sci. 27, 1197 (1972).

    Article  CAS  Google Scholar 

  24. D. W. Marquardt, J. Soc. Ind. App. Math. 11, 431 (1963).

    Article  Google Scholar 

  25. L. A. Goldblatt and S. Palkin, J. Am. Chem. Soc. 63, 3517 (1941).

    Article  CAS  Google Scholar 

  26. R. L. Burwell, Jr., J. Am. Chem. Soc. 73, 4461 (1951).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Chibiryaev.

Additional information

Published in Russian in Zhurnal Fizicheskoi Khimii, 2011, Vol. 85, No. 8, pp. 1460–1471.

This article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chibiryaev, A.M., Ermakova, A. & Kozhevnikov, I.V. Reaction reversibility in α-pinene thermal isomerization: improving the kinetic model. Russ. J. Phys. Chem. 85, 1347–1357 (2011). https://doi.org/10.1134/S0036024411080061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024411080061

Keywords

Navigation