Advertisement

Russian Journal of Physical Chemistry A

, Volume 85, Issue 7, pp 1237–1241 | Cite as

Determining the sizes of micropores in activated charcoals by the pulsed NMR method

  • G. Sh. GogelashviliEmail author
  • E. V. Khozina
  • R. Sh. Vartapetyan
  • D. V. Ladychuk
  • Yu. B. Grunin
Physical Chemistry of Surface Phenomena

Abstract

The pulsed NMR method was used to measure the nuclear spin-spin relaxation of protons of water adsorbed in micropores of activated charcoal (AC) samples with different porous structures. A correlation was found between the spin-spin relaxation time of water protons in AC with completely filled micropores and the volume density of water primary adsorption centers in the AC samples. An equation for approximating obtained dependences is proposed that allows us to determine the volume of micropores in AC.

Keywords

micropores activated charcoals pulsed NMR method spin-spin relaxation water adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Gregg and K. Sing, Adsorption, Surface Area, and Porosity (Mir, Moscow, 1970; Academic, New York, 1982), pp. 105–112.Google Scholar
  2. 2.
    M. M. Dubinin, Izv. Akad. Nauk SSSR, Ser. Khim., No. 1, 9 (1991).Google Scholar
  3. 3.
    M. M. Dubinin, Progress Surf. Membrane Sci. 9, 1 (1975).Google Scholar
  4. 4.
    K. R. Brownstein and C. E. Tarr, J. Magn. Reson. 26, 17 (1977).Google Scholar
  5. 5.
    F. Stallmach and J. Karger, Adsorption 5, 117 (1999).CrossRefGoogle Scholar
  6. 6.
    E. V. Khozina, R. Sh. Vartapetyan, and D. Sh. Idiyatullin, Izv. Akad. Nauk, Ser. Khim., No. 11, 1881 (2002).Google Scholar
  7. 7.
    G. Sh. Gogelashvili, R. Sh. Vartapetyan, D. V. Ladychuk, Yu. B. Grunin, and E. V. Khozina, Kolloidn. Zh. 65, 595 (2003) [Colloid. J. 65, 545 (2003)].Google Scholar
  8. 8.
    G. Sh. Gogelashvili, R. Sh. Vartapetyan, D. V. Ladychuk, Yu. B. Grunin, and E. V. Khozina, Kolloidn. Zh. 66, 1 (2004) [Colloid. J. 66, 271 (2004)].Google Scholar
  9. 9.
    R. Sh. Mikhail, S. Brunauer, and E. E. Bodor, J. Colloid Interface Sci. 26, 45 (1968).CrossRefGoogle Scholar
  10. 10.
    H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954).CrossRefGoogle Scholar
  11. 11.
    S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 6881 (1958).CrossRefGoogle Scholar
  12. 12.
    K. R. Brownstein and C. E. Tarr, J. Magn. Reson. 26, 17 (1977).Google Scholar
  13. 13.
    R. Sh. Vartapetyan and A. M. Voloshchuk, Usp. Khim. 64, 1055 (1995).Google Scholar
  14. 14.
    R. Sh. Vartapetyan, A. M. Voloshchuk, G. A. Petukhova, and N. S. Polyakov, Izv. Akad. Nauk, Ser. Khim., No. 12, 2048 (1993).Google Scholar
  15. 15.
    Yu. B. Grunin, I. N. Ermolenko, and L. E. Shpilevskaya, Vestn. Akad. Nauk BSSR, No. 1, 21 (1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • G. Sh. Gogelashvili
    • 1
    Email author
  • E. V. Khozina
    • 2
  • R. Sh. Vartapetyan
    • 2
  • D. V. Ladychuk
    • 1
  • Yu. B. Grunin
    • 1
  1. 1.Mari State Technical UniversityYoshkar OlaRussia
  2. 2.Frumkin Institute of ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations