Skip to main content
Log in

Features of the oxidation of C60 and C70 fullerites as studied by IR spectroscopy

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Features of the oxidation of C60 and C70 fullerites were studied by infrared spectroscopy. It was shown that for C60 fullerite, the presence of toluene residue reduces the temperature at which oxidation starts. The form of the toluene (solvate or nonsolvate) is not important. A low-frequency shift in the valence C-O-C vibrations of C70 fullerene due to local steric strains was discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Heymann and R. B. Weisman, Comp. Rend. Crimie 9, 1107 (2006).

    Article  CAS  Google Scholar 

  2. R. B. Weisman, D. Heymann, and S. M. Bachilo, J. Am. Chem. Soc. 123, 9720 (2001).

    Article  CAS  Google Scholar 

  3. D. Heymann, S. M. Bachilo, and R. B. Weisman, J. Am. Chem. Soc. 124, 6317 (2002).

    Article  CAS  Google Scholar 

  4. A. B. Smith, H. Tokuyama, R. M. Strongin, et al., J. Am. Chem. Soc. 117, 9359 (1995).

    Article  CAS  Google Scholar 

  5. R. Taylor, M. Barrow, and T. Drewello, Chem. Commun., 2497 (1998).

  6. E. V. Skokan, Extended Abstract of Doctoral Dissertation in Chemistry (Moscow, 2005).

  7. T. Itoh, S. Nitta, and S. Nonomora, J. Phys. Chem. Solids 58, 1741 (1997).

    Article  CAS  Google Scholar 

  8. Yu. M. Shul’ga, A. V. Kulikov, V. M. Martynenko, V. V. Open’ko, et al., Zh. Fiz. Khim. 82, 1479 (2008) [Russ. J. Phys. Chem. A 82, 1314 (2008)].

    Google Scholar 

  9. A. Gromov, S. Lebedkin, W. E. Hill, and W. Krätschmer, J. Phys. Chem. A 102, 4997 (1998).

    Article  CAS  Google Scholar 

  10. M. A. Eremina, V. I. Lad’yanov, and R. M. Nikonova, Russ. J. Phys. Chem. A 82, 2207 (2008).

    Article  CAS  Google Scholar 

  11. D. V. Konyrev and R. N. Lyubovskaya, Usp. Khim. 68, 23 (1999).

    Google Scholar 

  12. M. S. Al-Jafari, M. P. Barrow, R. Taylor, and T. Drewello, Int. J. Mass. Spectrom. 184, L1 (1999).

    Article  CAS  Google Scholar 

  13. T. Kudo, Y. Akimoto, K. Shinoda, et al., J. Phys. Chem. B 106, 4383 (2002).

    Article  CAS  Google Scholar 

  14. V. N. Bezmelnitsin, A. V. Eletskii, N. G. Schepetov, et al., J. Chem. Soc. Perkin Trans. II, 683 (1997).

  15. Y.-T. Lin, J.-H. Sheu, and S.-L. Lee, Chem. Phys. Lett. 345, 228 (2001).

    Article  CAS  Google Scholar 

  16. S. M. Azami, R. Pooladi, and M. H. Sheikhi, J. Mol. Struct: THEOCHEM 901, 153 (2009).

    Article  CAS  Google Scholar 

  17. K. Hedberg, L. Hedberg, M. Bühl, et al., J. Am. Chem. Soc. 119, 5314 (1997).

    Article  CAS  Google Scholar 

  18. M. S. Meier, Guan-Wu Wang, R. C. Haddon, et al., J. Am. Chem. Soc. 120, 2337 (1998).

    Article  CAS  Google Scholar 

  19. P. C. Eklund, A. M. Rao, P. Zhou, et al., Thin Solid Films 257, 185 (1995).

    Article  CAS  Google Scholar 

  20. E. F. Sheka, Zh. Strukt. Khim. 47, 613 (2006) [J. Struct. Chem. 47, 613 (2006)].

    Google Scholar 

  21. R. Swietlik, P. Byszewski, and E. Kowalska, Chem. Phys. Lett. 254, 73 (1996).

    Article  CAS  Google Scholar 

  22. K. T. Antonova, M. K. Marchewka, E. Kowalska, and P. Byszewski, Vibrat. Spectrosc. 16, 31 (1998).

    Article  CAS  Google Scholar 

  23. D. L. Kepert and B. W. Clare, Inorg. Chem. Acta 327, 41 (2002).

    Article  CAS  Google Scholar 

  24. S. Lebedkin, S. Ballenweg, J. Gross, et al., Tetrahedron Lett. 36, 4971 (1995).

    CAS  Google Scholar 

  25. M. Krause, L. Dunsch, G. Seifert, et al., J. Chem. Soc., Faraday Trans. 94, 2287 (1998).

    Article  CAS  Google Scholar 

  26. D. Tsyboulski, D. Heymann, S. M. Bachilo, et al., J. Am. Chem. Soc. 126, 7350 (2004).

    Article  CAS  Google Scholar 

  27. M. Wohlers, H. Werner, D. Herein, et al., Syntetic Metals 77, 299 (1996).

    Article  CAS  Google Scholar 

  28. A. Cuesta, M. Jamond, A. Martinez-Alonso, and J. M. D. Tascon, Carbon 34, 1239 (1996).

    Article  CAS  Google Scholar 

  29. J. A. Nisha, V. Sridharan, J. Hariharan, et al., J. Phys. Chem. 100, 4503 (1996).

    Article  CAS  Google Scholar 

  30. Run-Sheng Zhai, A. Das, Chien-Kui Hsu, et al., Carbon 42, 395 (2004).

    Article  CAS  Google Scholar 

  31. F. Cataldo, Carbon 40, 1457 (2002).

    Article  CAS  Google Scholar 

  32. L. N. Sidorov, M. A. Yurovskaya, A. Ya. Borshchevskii, et al., Fullerenes (Ekzamen, Moscow, 2005) [in Russian].

    Google Scholar 

  33. L. Bellamy, The Infrared Spectra of Complex Molecules (Chapman and Hall, London, 1975; Inostr. Liter., Moscow, 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Ladyanov.

Additional information

Original Russian Text © V.I. Ladyanov, V.V. Aksenova, R.M. Nikonova, 2010, published in Zhurnal Fizicheskoi Khimii, 2010, Vol. 84, No. 9, pp. 1699–1705.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladyanov, V.I., Aksenova, V.V. & Nikonova, R.M. Features of the oxidation of C60 and C70 fullerites as studied by IR spectroscopy. Russ. J. Phys. Chem. 84, 1548–1553 (2010). https://doi.org/10.1134/S0036024410090190

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024410090190

Keywords

Navigation