Skip to main content
Log in

The thermodynamic properties of S-lactic acid

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The enthalpies of combustion and formation of S-lactic acid at 298.15 K, Δc H om (cr.) = −1337.9 ± 0.8 and Δf H om (cr.) = −700.1 ± 0.9 kJ/mol, were determined by calorimetry. The temperature dependence of acid vapor pressure was studied by the transpiration method, and the enthalpy of its vaporization was obtained, Δvap H o(298.15 K) = 69.1 ± 1.0 kJ/mol. The temperature and enthalpy of fusion, T m (330.4 K) and Δm H o(298.15 K) = 14.7 ± 0.2 kJ/mol, were determined by differential scanning calorimetry. The enthalpy of formation of the acid in the gas phase was obtained. Ab initio methods were used to perform a conformational analysis of the acid, calculate fundamental vibration frequencies, moments of inertia, and total and relative energies of the stablest conformers. Thermodynamic properties were calculated in the ideal gas state over the temperature range 0–1500 K. A thermodynamic analysis of mutual transformation processes (the formation of SS- and RS(meso)-lactides from S-lactic acid and the racemization of these lactides) and the formation of poly-(RS)-lactide from S-lactic acid and SS- and RS(meso)-lactides was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Wilhoit, J. Chao, and K. R. Hall, J. Phys. Chem. Ref. Data 14, 144 (1985).

    Article  Google Scholar 

  2. Chemical Encyclopedical Glossary, Ed. by I. L. Knunyants (Sov. entsiklopediya, Moscow, 1983) [in Russian].

    Google Scholar 

  3. V. A. Rabinovich and Z. Ya. Khavin, Short Chemical Manual (Khimiya, Moscow, 1977) [in Russian].

    Google Scholar 

  4. Chemical Encyclopedy, Ed. by I. L. Knunyants (Sov. entsiklopediya, Moscow, 1988), Vol. 3 [in Russian].

    Google Scholar 

  5. H. Borsook, H. M. Huffman, and Y. P. Liu, J. Biol. Chem. 102, 449 (1933).

    CAS  Google Scholar 

  6. G. B. Lockwood, D. E. Yoder, M. Zienty, and N. Y. Ann, Acad. Sci 119, 854 (1965).

    Article  CAS  Google Scholar 

  7. G. Saville and H. A. Gundry, Trans. Faraday Soc. 55, 2039 (1959).

    Article  Google Scholar 

  8. H. M. Huffman, E. L. Ellis, and H. Borsook, J. Am. Chem. Soc. 62, 297 (1940).

    Article  CAS  Google Scholar 

  9. V. N. Emel’yanenko, S. P. Verevkin, and A. Heintz, J. Am. Chem. Soc. 129, 3930 (2007).

    Article  Google Scholar 

  10. V. N. Emel’yanenko, S. P. Verevkin, E. N. Burakova, et al., Zh. Fiz. Khim. 82, 1708 (2008) [Russ. J. Phys. Chem. A 82, 1521 (2008)].

    Google Scholar 

  11. S. Sunner and M. Mansson, Experimental Chemical Thermodynamics, Vol. 1: Combustion Calorimetry (Pergamon, New York, London, 1979).

    Google Scholar 

  12. S. P. Verevkin and C. Schick, J. Chem. Eng. Data 45, 946 (2000).

    Article  CAS  Google Scholar 

  13. J. S. Chickos and W. E. Acree, J. Phys. Chem. Ref. Data 32, 5519 (2003).

    Article  Google Scholar 

  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J.V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gäussian 03, Revision C.04 (Gaussian Inc., Pittsburg, PA, 2003).

    Google Scholar 

  15. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  16. A. Shouten, J. Kanters, and J. Krieken, J. Mol. Struct. 323, 165 (1994).

    Article  Google Scholar 

  17. B. Eijck, J. Mol. Spectrosc. 101, 133 (1983).

    Article  Google Scholar 

  18. M. Pecul, A. Rizzo, and J. Leszczynsli, J. Phys. Chem. A 106, 11008 (2002).

    Article  CAS  Google Scholar 

  19. A. Borba, A. Gomez-Zavaglia, L. Lapinski, and R. Fausto, Phys. Chem. Chem. Phys. 6, 2101 (2004).

    Article  CAS  Google Scholar 

  20. G. Ya. Kabo, G. N. Roganov, and M. L. Frenkel’, Thermodynamics and Equilibria of Isomers (Universitetskoe, Minsk, 1986) [in Russian].

    Google Scholar 

  21. M. L. Frenkel, G. Ja. Kabo, K. N. Marsh, G. N. Roganov, et al., Thermodynamics of Organic Compounds in the Gas State, TRC Date Series (Thermodyn. Res. Center, College Station, Texas, USA, 1994), Vol. 1.

    Google Scholar 

  22. G. Cassanas, M. Morssli, and L. Bardet, J. Raman Spectrosc. 22, 409 (1991).

    Article  CAS  Google Scholar 

  23. National Institute of Advanced Industrial Science and Technology, http://www.aist.go.jp/RIODB/SDBS/ date of access.

  24. L. Pszczolkowski, E. Bialkowska-Jaworska, and Z. Kisiel, J. Mol. Spectrosc. 234, 106 (2005).

    Article  CAS  Google Scholar 

  25. The Thermodynamic Tables Non-hydrocarbons (Thermodyn. Res. Center, College Station, Texas, USA, 1991).

  26. N. D. Lebedeva, Russ. J. Phys. Chem. 38, 1435 (1964).

    Google Scholar 

  27. J. Konicek and I. Wadso, Acta Chem. Scand. 24, 2612 (1970).

    Article  CAS  Google Scholar 

  28. J. P. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of Organic Compounds, 2nd ed. (Chapman and Hall, London, 1986).

    Google Scholar 

  29. T. G. Kulagina, B. V. Lebedev, V. G. Kiparisova, et al., Vysokomol. Soedin. A 24, 1496 (1982).

    CAS  Google Scholar 

  30. V. N. Emel’yanenko, S. P. Verevkin, and E. N. Stepurko, Izv. NAN Belarusi (in press).

  31. B. V. Lebedev, T. G. Kulagina, and E. G. Kiparisova, Zh. Fiz. Khim. 73, 609–616 (1999) [Russ. J. Phys. Chem. A 73, 521 (1999)].

    CAS  Google Scholar 

  32. C. W. Scheele, The Discovery of Lactic Acid (Weinheim, Bergstr, 1971).

    Google Scholar 

  33. S. Dutkiewicz, D. Grochowska-Lapienis, and W. Tomaszewski, Fiber Textile 11, 66 (2003).

    CAS  Google Scholar 

  34. T. Tsukegi, T. Motoyama, Y. Shirai, et al., Polymer Degr. Stab. 92, 552 (2007).

    Article  CAS  Google Scholar 

  35. D. Garlotta, J. Polym. Environm. 9, 63 (2001).

    Article  CAS  Google Scholar 

  36. S. Jacobsen, Ph. Degee, H. G. Fritz, and R. Jerome, Polym. Eng. Sci. 39, 1311 (1999).

    Article  CAS  Google Scholar 

  37. A. P. Gupta and V. Kumar, Eur. Polym. J. 43, 4053 (2007).

    Article  CAS  Google Scholar 

  38. A. A. Aleksandrov and B. A. Grigoriev, Tables of Thermophysical Properties of Water and Steam: A Reference Book, GSSSD R-76-98 (Mosc. Energ. Inst., Moscow, 1999) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Roganov.

Additional information

Original Russian Text © V.N. Emel’yanenko, S.P. Verevkin, C. Schick, E.N. Stepurko, G.N. Roganov, M.K. Georgieva, 2010, published in Zhurnal Fizicheskoi Khimii, 2010, Vol. 84, No. 9, pp. 1638–1645.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emel’yanenko, V.N., Verevkin, S.P., Schick, C. et al. The thermodynamic properties of S-lactic acid. Russ. J. Phys. Chem. 84, 1491–1497 (2010). https://doi.org/10.1134/S0036024410090074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024410090074

Keywords

Navigation