Skip to main content
Log in

The special features of the thermodynamic characteristics of hydration of univalent ions according to the reference interaction site model

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The dependence of the Gibbs energy of hydration of univalent ions was calculated on the basis of integral equations for a molecular liquid. Calculations were performed in the approximation of the reference interaction site model (RISM). The relation between the energy of hydration of ions and local electrostatic field microinhomogeneities in solution was studied. It was shown that the best variant was the RISM with the hypernetted chain closure, partial inclusion of orientation effects, and semiempirical corrections for the excluded volume and the presence of H-bonds with solutes. Predictions based on the selected variant of the model were in close agreement with the experimental data. The analysis performed indicated directions for the improvement of the RISM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Marcus, Ion Solvation (Wiley, Chichester, UK, 1985).

    Google Scholar 

  2. The Chemical Physics of Solvation. Part A, Ed. by R. R. Dogonadze, E. Kalman, A. A. Kornyshev, and J. Ulstrup (Elsevier, Amsterdam, 1985).

    Google Scholar 

  3. G. N. Chuev and M. V. Bazilevskii, Usp. Khim. 735, 827 (2003).

    Google Scholar 

  4. Encyclopedia of Computational Chemistry, Ed. by P. R. Schleyer (Wiley, Chichester, UK, 1998).

    Google Scholar 

  5. G. Hummer, L. R. Pratt, and A. E. Garcia, J. Phys. Chem. 100, 1206 (1996).

    Article  CAS  Google Scholar 

  6. R. M. Lynden-Bell and J. C. Rasaiah, J. Chem. Phys. 107, 1981 (1997).

    Article  CAS  Google Scholar 

  7. J. Dzubiella and J. P. Hansen, J. Chem. Phys. 119, 12049 (2003).

    Article  CAS  Google Scholar 

  8. G. N. Chuev, M. V. Fedorov, and N. Russo, Phys. Rev. B 67, 125103 (2003).

    Article  Google Scholar 

  9. G. Bellesia, M. V. Fedorov, and E. G. Timoshenko, J. Chem. Phys. 128, 195105 (2008).

    Article  Google Scholar 

  10. M. V. Fedorov, J. M. Goodman, and S. Schumm, Chem. Commun. 8, 896 (2009).

    Article  Google Scholar 

  11. B. M. Pettitt and P. J. Rossky, J. Chem. Phys. 77, 1451 (1982).

    Article  CAS  Google Scholar 

  12. S. H. Chong and F. Hirata, J. Phys. Chem. B 101, 3209 (1997).

    Article  CAS  Google Scholar 

  13. F. Hirata, B. M. Pettitt, and P. J. Rossky, J. Chem. Phys. 77, 509 (1982).

    Article  CAS  Google Scholar 

  14. A. Kovalenko and T. N. Truong, J. Chem. Phys. 113, 7458 (2000).

    Article  CAS  Google Scholar 

  15. M. V. Fedorov, G. N. Chuev, Yu. A. Kuznetsov, et al., Phys. Rev. E 70, 051803 (2004).

    Article  CAS  Google Scholar 

  16. F. O. Raineri, H. Resat, and H. L. Friedman, J. Chem. Phys. 96, 3068 (1992).

    Article  CAS  Google Scholar 

  17. G. N. Chuev, M. V. Fedorov, S. Chiodo, et al., J. Comp. Chem. 29, 2406 (2008).

    Article  CAS  Google Scholar 

  18. M. V. Fedorov, J. M. Goodman, V. V. Kolombet, et al., J. Mol. Liq. 147, 117 (2009).

    Article  CAS  Google Scholar 

  19. G. N. Chuev, S. Chiodo, M. V. Fedorov, et al., Chem. Phys. Lett. 418, 485 (2006).

    Article  CAS  Google Scholar 

  20. S. Chiodo, G. N. Chuev, M. V. Fedorov, et al., Int. J. Quantum Chem. 107, 265 (2007).

    Article  CAS  Google Scholar 

  21. M. V. Fedorov, J.M. Goodman, and S. Schumm, Phys. Chem. Chem. Phys. 9, 5423 (2007).

    Article  CAS  Google Scholar 

  22. D. Chandler and H. C. Andersen, J. Chem. Phys. 57, 1930 (1972).

    Article  CAS  Google Scholar 

  23. H-A. Yu, B. Roux, and M. Karplus, J. Chem. Phys. 92, 5020 (1990).

    Article  CAS  Google Scholar 

  24. G. N. Chuev, M. V. Fedorov, and J. Crain, Chem. Phys. Lett. 448, 198 (2007).

    Article  CAS  Google Scholar 

  25. D. Chandler, Y. Singh, and D. Richardson, J. Chem. Phys. 81, 1975 (1984).

    Article  CAS  Google Scholar 

  26. S. Ten-no, J. Chem. Phys. 115, 3724 (2001).

    Article  CAS  Google Scholar 

  27. L. Lue and D. Blankschtein, J. Phys. Chem. 96, 8582 (1992).

    Article  CAS  Google Scholar 

  28. M. V. Fedorov and A. A. Kornyshev, Mol. Phys. 105, 1 (2007).

    Article  CAS  Google Scholar 

  29. G. N. Chuev and M. V. Fedorov, J. Comput. Chem. 25, 1369 (2004).

    Article  CAS  Google Scholar 

  30. G. N. Chuev and M. V. Fedorov, Phys. Rev. E 68, 027702 (2003).

    Article  CAS  Google Scholar 

  31. M. V. Fedorov, H.-J. Flad, G. N. Chuev, et al., Computing 80, 47 (2007).

    Article  Google Scholar 

  32. G. N. Chuev and M. V. Fedorov, J. Chem. Phys. 120, 1191 (2004).

    Article  CAS  Google Scholar 

  33. M. V. Fedorov and G. N. Chuev, J. Mol. Liq. 120, 159 (2005).

    Article  CAS  Google Scholar 

  34. J. Florian and A. Warshel, J. Phys. Chem. B 103, 10282 (1999).

    Article  CAS  Google Scholar 

  35. J. R. Pliego, Jr. and J. M. Riveros, Chem. Phys. Lett. 332, 597 (2000).

    Article  CAS  Google Scholar 

  36. G. N. Chuev, S. E. Erofeeva, and V. F. Sokolov, Biofizika 52, 773 (2007).

    CAS  Google Scholar 

  37. G. N. Chuev and M. V. Fedorov, Int. J. Quantum Chem. 100, 539 (2004).

    Article  CAS  Google Scholar 

  38. G. N. Chuev and M. V. Fedorov, Zh. ’Eksp. Teor. Fiz. 97(8), 1 (2003) [JETP 97, 566 (2003)].

    Google Scholar 

  39. G. N. Chuev and M. V. Fedorov, et al., J. Theor. Comput. Chem. 4, 751 (2005).

    Article  CAS  Google Scholar 

  40. G. N. Chuev, J. Mol. Liq. 105, 163 (2003).

    Article  Google Scholar 

  41. M. V. Fedorov and A. A. Kornyshev, J. Phys. Chem. B 112, 11868 (2008).

    Article  CAS  Google Scholar 

  42. M. V. Fedorov and A. A. Kornyshev, Electrochim. Acta 53, 6835 (2008).

    Article  CAS  Google Scholar 

  43. G. Bellesia, M. V. Fedorov, and E. G. Timoshenko, Phys. A 373, 455 (2007).

    Article  CAS  Google Scholar 

  44. N. N. Khechinashvili, M. V. Fedorov, A. V. Kabanov, et al., J. Biomol. Struct. Dyn. 24, 255 (2006).

    CAS  Google Scholar 

  45. G. Bellesia, M. V. Fedorov, Yu. A. Kuznetsov, et al., J. Chem. Phys. 122, 134901 (2005).

    Article  Google Scholar 

  46. G. N. Chuev and M. V. Fedorov, J. Mol. Liq. 120, 155 (2005).

    Article  CAS  Google Scholar 

  47. M. V. Fedorov, J. M. Goodman, and S. Schumm, J. Am. Chem. Soc. 131, 10854 (2009).

    Article  CAS  Google Scholar 

  48. G. N. Chuev and V. F. Sokolov, J. Phys. Chem. B 110, 18496 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolombet.

Additional information

Original Russian Text © V.A. Kolombet, V.P. Sergievskii, 2010, published in Zhurnal Fizicheskoi Khimii, 2010, Vol. 84, No. 9, pp. 1613–1618.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolombet, V.A., Sergievskii, V.P. The special features of the thermodynamic characteristics of hydration of univalent ions according to the reference interaction site model. Russ. J. Phys. Chem. 84, 1467–1472 (2010). https://doi.org/10.1134/S0036024410090025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024410090025

Keywords

Navigation