Skip to main content
Log in

Thermodynamic properties of glycolic acid and glycolide

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The values of combustion and formation enthalpy for glycolic acid (I) and glycolide (II) were determined by calorimetry. The temperature dependence of vapor pressures of I and II was obtained using the transpiration method, and the sublimation enthalpies were obtained. The enthalpy of melting of I was found by differential scanning calorimetry. Stable conformers were determined by the ab initio (DFT) method, and combinations of the fundamental oscillations and inertia momenta of I and II conformers were calculated. The full and relative energies of the compounds most stable conformers were found by a composite G3MP2 method, and the enthalpies of formation of I and II in the gaseous state were estimated. The values of the thermodynamic properties in the ideal gas state were determined over the range of 0–1500 K. A thermodynamic analysis was performed for the process of preparation of II from I and the formation of polyglycolide (III) from I and II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Dorofeeva, V. P. Novikov, and D. B. Neumann, J. Phys. Chem. Ref. Data 30, 475 (2001).

    Article  CAS  Google Scholar 

  2. B. V. Lebedev, A. A. Evstropov, E. G. Kiparisova, et al., Dokl. Akad. Nauk SSSR 236, 669 (1977).

    CAS  Google Scholar 

  3. B. V. Lebedev, A. A. Evstropov, E. G. Kiparisova, and V. I. Belov, Vysokomol. Soedin. A 20, 29 (1978).

    CAS  Google Scholar 

  4. B. V. Lebedev, T. G. Kulagina, and N. N. Smirnova, J. Chem. Thermodyn. 20, 1383 (1988).

    Article  CAS  Google Scholar 

  5. V. N. Emel’yanenko, S. P. Verevkin, E. N. Burakova, et al., Zh. Fiz. Khim. 82, 1708 (2008) [Russ. J. Phys. Chem. A 82, 1521 (2008)].

    Google Scholar 

  6. V. N. Emel’yanenko, S. P. Verevkin, and A. Heintz, J. Am. Chem. Soc. 129, 3930 (2007).

    Article  Google Scholar 

  7. S. Sunner and M. Mansson, Experimental Chemical Thermodynamics, Vol. 1: Combustion Calorimetry (Pergamon, New York, London, 1979).

    Google Scholar 

  8. S. P. Verevkin and C. Schick, J. Chem. Eng. Data 45, 946 (2000).

    Article  CAS  Google Scholar 

  9. D. Kulikov, S. P. Verevkin, and A. Heintz, J. Chem. Eng. Data 46, 1593 (2001).

    Article  CAS  Google Scholar 

  10. J. S. Chickos and W. E. Acree, J. Phys. Chem. Ref. Data 32, 5519 (2003).

    Article  Google Scholar 

  11. H. Hollenstein, T.-K. Ha, and H. H. Gunthard, J. Mol. Struct. 146, 289 (1986).

    Article  CAS  Google Scholar 

  12. I. D. Reva, S. Jarmelo, L. Lapinski, and R. Fausto, Chem. Phys. Lett. 389, 68 (2004).

    Article  CAS  Google Scholar 

  13. C. E. Blom and A. Bauder, Chem. Phys. Lett. 82, 492 (1981).

    Article  CAS  Google Scholar 

  14. R. D. Ellison, C. K. Johnson, and H. A. Levy, Acta Crystallogr. B 27, 333 (1971).

    Article  CAS  Google Scholar 

  15. W. P. Pijper, Acta Crystallogr. B 27, 344 (1971).

    Article  CAS  Google Scholar 

  16. H. Hasegawa, O. Ohashi, and I. Yamaguchi, J. Mol. Struct. 82, 205 (1982).

    Article  CAS  Google Scholar 

  17. C. E. Blom and A. Bauder, J. Am. Chem. Soc. 104, 2993 (1982).

    Article  CAS  Google Scholar 

  18. L. H. Scharpen, in Proc. of the Symp. on Mol. Struct. Spectrosc. (Ohio, 1972), Abstr. E4, p. 77.

  19. P. D. Godfrey, F. M. Rodgers, and R. D. Brown, J. Am. Chem. Soc. 119, 2232 (1997).

    Article  CAS  Google Scholar 

  20. K. Iijima, M. Kato, and B. Beagley, J. Mol. Struct. 295, 289 (1993).

    Article  CAS  Google Scholar 

  21. M. D. Newton and G. A. Jeffrey, J. Am. Chem. Soc. 99, 2413 (1977).

    Article  CAS  Google Scholar 

  22. T.-K. Ha, C. E. Blom, and H. H. Gunthard, J. Mol. Struct. 85, 285 (1981).

    Google Scholar 

  23. M. Flock and M. Ramek, Int. J. Quantum Chem. S26, 505 (1992).

    Article  Google Scholar 

  24. F. Jensen, Acta Chem. Scand. 51, 439 (1997).

    Article  CAS  Google Scholar 

  25. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  26. L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 112, 1125 (2000).

    Article  CAS  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03. Rev. B. 04 (Gaussian Inc., Pittsburg, PA, 2003).

    Google Scholar 

  28. H. Hollenstein, R. W. Schar, N. Schwizgebel, et al., Spectrochim. Data A 39(3), 193 (1983).

    Article  Google Scholar 

  29. National Institute of Advanced Industrial Science and Technology, http://www.aist.go.jp/RIODB/SDBS/date of access.

  30. G. Kister, G. Cassanas, E. Fabregue, and L. Bardet, Eur. Polym. J. 28, 1273 (1992).

    Article  CAS  Google Scholar 

  31. G. Ya. Kabo, G. N. Roganov, and M. L. Frenkel’, Thermodynamics and Equilibria of Isomeres (Universitetskoe, Minsk, 1986) [in Russian].

    Google Scholar 

  32. M. L. Frenkel, G. Ja. Kabo, K. N. Marsh, et al., Thermodynamics of Organic Compounds in the Gas State, TRC Date Series (Thermodyn. Res. Center, College Station, Texas, USA, 1994), Vol. 1.

    Google Scholar 

  33. The Thermodynamic Tables Non-Hydrocarbons (Thermodyn. Res. Center, College Station, Texas, USA, 1991).

  34. J. P. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of Organic Compounds, 2nd ed. (Chapman and Hall, London, 1986).

    Google Scholar 

  35. V. N. Emel’yanenko, S. P. Verevkin, E. N. Stepurko, et al., Izv. NAN Belarusi (in press).

  36. B. V. Lebedev, Usp. Khim. 65, 1149 (1996).

    CAS  Google Scholar 

  37. A. A. Aleksandrov and B. A. Grigor’ev, Tables of Thermophysical Properties of Water and Water Vapour, The Manual GSSSD R-76-98 (Mosc. Energ. Inst., Moscow, 1999) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Roganov.

Additional information

Original Russian Text © V.N. Emel’yanenko, S.P. Verevkin, E.N. Stepurko, G.N. Roganov, M.K. Georgieva, 2010, published in Zhurnal Fizicheskoi Khimii, 2010, Vol. 84, No. 8, pp. 1434–1441.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emel’yanenko, V.N., Verevkin, S.P., Stepurko, E.N. et al. Thermodynamic properties of glycolic acid and glycolide. Russ. J. Phys. Chem. 84, 1301–1308 (2010). https://doi.org/10.1134/S0036024410080054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024410080054

Keywords

Navigation