Skip to main content
Log in

Enzyme-polyelectrolyte complex: Salt effects on the reaction of urease with polyallylamine

  • Biophysical Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effects of inorganic mono- and divalent salts of different types on how the cation polyelectrolyte polyallylamine hydrochloride (PAA) binds with the oligomer enzyme urease were studied. It was shown that in solutions of the monovalent salts NaCl, KCl, and NH4Cl, polyelectrolyte-protein complexes formed by electrostatic interactions, which decreased monotonically as the salt concentrations increased according to the classic law of statistical physics, correlating the Debye radius with the ionic strength of the solution. In solutions of the divalent salts Na2SO4 and (NH4)2SO4, the efficiency of the formation of the polyelectrolyte-protein complexes changed abruptly (the enzyme was drastically activated) at low salt concentrations (∼0.6–0.8 mM), which was not consistent with the classic theory of charge interactions in solutions with different ionic strengths. Turbidimetric titration at different salt concentrations in the given range revealed a high aggregative ability for sulfates and low ability for chlorides. It was concluded that the anomalies in the concentration dependence of the enzyme activity and aggregative ability were related to the formation of stable bonds PAA to the divalent SO 2−4 anion, which increased drastically when the ratio of anion concentration to the number of positively charged PAA monomers in solution reached 1: 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bernfield, M. Gotte, P. W. Park, et al., An. Rev. Biochem. 68, 729 (1999).

    Article  CAS  Google Scholar 

  2. H. M. Himmel, M. Pietsch, U. Streller, et al., Basic Res. Cardiol. 97(6), 434 (2002).

    Article  CAS  Google Scholar 

  3. E. Seyrek, P. L. Dubin, C. Tribet, and E. A. Gamble, Biomacromolecules 4, 273 (2003).

    Article  CAS  Google Scholar 

  4. S. Mulrooney, T. Zakharian, R. A. Schaller, and R. P. Hausinger, Archiv. Biochem. Biophys. 394, 280–282 (2001).

    Article  CAS  Google Scholar 

  5. S. D. Cesareo and S. R. Langton, FEMS Microbiol. Lett. 99, 15 (1992).

    Article  CAS  Google Scholar 

  6. M. B. Moncrief, L. G. Hom, E. Jabri, et al., Protein Sci. 4, 2234 (1995).

    Article  CAS  Google Scholar 

  7. R. Bhowmick and M. V. Jagannadham, Protein J. 25, 399 (2006).

    Article  CAS  Google Scholar 

  8. S. Mulrooney, Archiv. Biochem. Biophys. 394, 280 (2001).

    Article  CAS  Google Scholar 

  9. M. A. Pearson, I. S. Park, R. A. Schaller, et al., Biochemistry 39, 8575 (2000).

    Article  CAS  Google Scholar 

  10. R. P. Hausinger and P. A. Karplus, Handbook of Metalloproteins, Ed. by K. Wieghardt, R. Huber, T. L. Poulos, and A. Messerschmidt (Wiley, West Sussex, UK, 2001), pp. 867–879.

    Google Scholar 

  11. A. B. Kayitmazer, S. P. Strand, S. P. Tribet, et al., Biomacromolecules 8, 3568 (2007).

    Article  CAS  Google Scholar 

  12. C. Follmer, Phytochemistry 69, 18 (2008).

    Article  CAS  Google Scholar 

  13. K. Kaibara, T. Okazaki, H. B. Bohidar, and P. L. Dubin, Biomacromolecules 1, 100 (2000).

    Article  CAS  Google Scholar 

  14. H. L. Mobley, M. D. Island, and R. P. Hausinger, Microbiol. Rev. 59, 451 (1995).

    CAS  Google Scholar 

  15. S. A. Tikhonenko, E. A. Saburova, Yu. N. Dybovskaya, and B. I. Sukhorukov, Zh. Fiz. Khim. 82, 554 (2008) [Russ. J. Phys. Chem. 82, 468 (2008)].

    Google Scholar 

  16. R. Feinman, R. Leiton, and M. Sands, Feinmann Lectures in Physics (Addison-Wesley, Reading, Mass, 1964; Mir, Moscow, 1966).

    Google Scholar 

  17. P. H. Von-Hippel and A. Hamabata, J. Mechanochem. Cell Motic. 2, 127 (1973).

    CAS  Google Scholar 

  18. R. L. Baldwin, Biophys. J. 71, 2056 (1996).

    Article  CAS  Google Scholar 

  19. J. Musil, O. Novakova, and K. Kunz, Biochemistry in Schematic Perspective (Prague, 1977; Mir, Moscow, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Tikhonenko.

Additional information

Original Russian Text © S.A. Tikhonenko, E.A. Saburova, E.N. Durdenko, B.I. Sukhorukov, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 10, pp. 1966–1974.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tikhonenko, S.A., Saburova, E.A., Durdenko, E.N. et al. Enzyme-polyelectrolyte complex: Salt effects on the reaction of urease with polyallylamine. Russ. J. Phys. Chem. 83, 1781–1788 (2009). https://doi.org/10.1134/S0036024409100276

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024409100276

Keywords

Navigation