Skip to main content
Log in

Apparent molar volume, viscosity, and adiabatic compressibility of some mineral sulfates in aqueous binary mixtures of formamide at 298.15, 308.15, and 318.15 K

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The densities and viscosities of several sulfates, viz., ammonium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, zinc sulfate and cadmium sulfate in aqueous binary mixtures of formamide (FA) have been determined at 298.15, 308.15, and 318.15 K and at atmospheric pressure. The ultrasonic speeds of the electrolytic solutions have also been measured at 298.15 K. Apparent molar volumes (ϕ V ), viscosity B-coefficients and adiabatic compressibilities (K S) of these electrolytic solutions were calculated from the experimental densitiy, viscosity and acoustic data. The density and viscosity data were evaluated by using Masson’s and Jones-Dole equation respectively; the derived parameters have been analyzed in terms of ion-ion and ion-solvent interactions. The structure making/breaking capacities of the electrolytes have been inferred from the sign of (∂2ϕ 0 V /∂T 2) P . The results showed that all the electrolytes act as structure-makers in these media. Also the compressibility data indicated electrostriction of the solvent molecules around the cations. The activation parameters of viscous flow were also determined and discussed by the application of transition state theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Das, B. Das, and D. K. Hazra, J. Solution Chem. 32, 85 (2003).

    Article  CAS  Google Scholar 

  2. J. M. McDowali and C. A. Vincent, J. Chem. Soc. Faraday Trans. 1, 1862 (1974).

    Google Scholar 

  3. M. R. J. Deck, K. J. Bird, and A. J. Parker, Aust. J. Chem. 28, 955 (1975).

    Article  Google Scholar 

  4. M. N. Roy, B. Sinha, R. Dey, and A. Sinha, Int. J. Thermophys. 26, 1549 (2005).

    Article  CAS  Google Scholar 

  5. M. N. Roy, B. Sinha, V. K. Dakua, and A. Sinha, Pak. J. Sci. Ind. Res. 49, 153 (2006).

    CAS  Google Scholar 

  6. M. N. Roy and A. Sinha, J. Indian. Chem. Soc. 83, 160 (2006).

    CAS  Google Scholar 

  7. M. N. Roy and A. Sinha, Phys. Chem. Liq. 45, 67 (2007).

    Article  Google Scholar 

  8. A. Choudhury and M. N. Roy, Pak. J. Sci. Ind. Res. 48(3), 162 (2005).

    CAS  Google Scholar 

  9. G. T. Fraser, R. D. Suenram and F. J. Lovas, J. Mol. Liq. 189, 165 (1988).

    CAS  Google Scholar 

  10. D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd ed. (Pergamon, New York, 1988).

    Google Scholar 

  11. A. K. Covington and T. Dickinson, Physical Chemistry of Organic Solvent Systems (Plenum, London, New York, 1973).

    Google Scholar 

  12. M. N. Roy, B. K. Sarkar, and R. Chanda, J. Chem. Eng. Data 52, 1630 (2007).

    Article  CAS  Google Scholar 

  13. A. M. Cases, A. C. G. Marigliano, C. M. Bonatti, and H. N. Solimo, J. Chem. Eng. Data 46, 712 (2001).

    Article  CAS  Google Scholar 

  14. A. C. G. Marigliano and H. N. J. Solimo, Chem. Eng. Data 47, 796 (2002).

    Article  Google Scholar 

  15. J. R. Suindells and T. B. Godfray, J. Res. Natd. Bur. Stand. 48, 1 (1952).

    Google Scholar 

  16. D. P. Shoemaker and C. W. Garland, Experiment’s in Physical Chemistry (McGraw-Hill, New York, 1967), p. 131.

    Google Scholar 

  17. V. K. Dakua, B. Sinha, and M. N. Roy, Ind. J. Chem. A 45, 1381 (2006).

    Google Scholar 

  18. B. Sinha, B. K. Sarkar, and M. N. Roy, J. Chem. Thermodynam. 40, 394 (2008).

    Article  CAS  Google Scholar 

  19. M. N. Roy, A. Sinha, and B. Sinha, J. Solut. Chem. 34, 1311 (2005).

    Article  CAS  Google Scholar 

  20. M. N. Roy, B. Sinha, and V. K. Dakua, J. Chem. Eng. Data 51, 590 (2006).

    Article  CAS  Google Scholar 

  21. M. N. Roy and A. Sinha, Fluid Phase Equilibria 243, 133 (2006).

    Article  CAS  Google Scholar 

  22. M. N. Roy and M. Das, Russ. J. Phys. Chem. 80, S163 (2006).

    Article  CAS  Google Scholar 

  23. B. K. Sarkar, B. Sinha, and M. N. Roy, Russ. J. Phys. Chem. 82(6), c1 (2008).

    Article  Google Scholar 

  24. O. Redllich and D. M. Meyer, Chem. Rev. 64, 221 (1964).

    Article  Google Scholar 

  25. D. O. Masson, Phil. Mag. 8, 218 (1929).

    CAS  Google Scholar 

  26. A. N. Kannappan and R. Palani, Ind. J. Chem. A 46, 54 (2007).

    Google Scholar 

  27. R. Gopal and P. Ramanand, Ind. J. Chem. A 16, 250 (1978).

    Google Scholar 

  28. N. Saha, B. Das, and D. K. Hazra, J. Chem. Eng. Data. 40, 1264 (1995).

    Article  CAS  Google Scholar 

  29. F. J. Millero, J. Chem. Eng. Data 18, 407 (1973).

    Article  CAS  Google Scholar 

  30. C. Guha, J. M. Chakraborty, S. Karanjai, and B. Das, J. Phys. Chem. B 107, 12814 (2003).

    Article  CAS  Google Scholar 

  31. P. S. Nikam, A. S. Sawant, J. S. Aher, and R. S. Khainer, J. Ind. Chem. Soc. 77, 197 (2000).

    CAS  Google Scholar 

  32. F. J. Millero, Structure and Transport Processes in Water and Aqueous Solution, Ed. by R. A. Horne (Wiley, New York, 1971), Vol. 15, p. 622.

    Google Scholar 

  33. R. Dey, A. Jha, and M. N. Roy, J. Chem. Eng. Data 46, 1327 (2001).

    Article  Google Scholar 

  34. L. G. Hepler, Can. J. Chem. 47, 4613 (1969).

    Article  CAS  Google Scholar 

  35. R. R. Gupta and M. Singh, Ind. J. Chem. A 46, 455 (2007).

    Google Scholar 

  36. G. Jones and M. Dole, J. Amer. Chem. Soc. 51, 2950 (1929).

    Article  CAS  Google Scholar 

  37. H. Falkenhagen and M. Dole, Phys. Z. 31, 611 (1929).

    Google Scholar 

  38. T. S. Sharma and J. C. Ahluwalia, Rev. Chem. Soc. London 2, 217 (1973).

    Google Scholar 

  39. D. Feakins, D. J. Freemantle, and K. G. Lawrence, J. Chem. Soc. Faraday Trans. I 70, 795 (1974).

    Article  CAS  Google Scholar 

  40. S. Glasston, K. Laidler, and H. Eyring, The Theory of Rate Processes (McGraw-Hill, New York, 1941), p. 477.

    Google Scholar 

  41. M. L. Parmar and R. C. Thakur, Ind. J. Chem. A 45, 1631 (2006).

    Google Scholar 

  42. B. R. Reddy and D. L. Reddy, Ind. J. Pure Appl. Phys. 37, 13 (1999).

    CAS  Google Scholar 

  43. D. P. Gulwade, M. L. Norwade, and K. N. Wadodkar, Ind. J. Chem. A 43, 2102 (2004).

    Google Scholar 

  44. F. Gucker, Chem. Rev. 13, 111 (1933).

    Article  CAS  Google Scholar 

  45. P. W. Debye and E. Huckel, Z. Phys. 24, 185 (1923).

    CAS  Google Scholar 

  46. K. N. Mehrotra and M. Anis, J. Ind. Chem. Soc. 74, 720 (1997).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Roy.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, M.N., Chanda, R. & Sarkar, B.K. Apparent molar volume, viscosity, and adiabatic compressibility of some mineral sulfates in aqueous binary mixtures of formamide at 298.15, 308.15, and 318.15 K. Russ. J. Phys. Chem. 83, 1737–1746 (2009). https://doi.org/10.1134/S0036024409100203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024409100203

Keywords

Navigation