Skip to main content
Log in

Critical phenomena in liquids (theory)

  • On the 175th Anniversary of D.I. Mendeleev
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

It is shown that the Ornstein-Zernike equation has two solutions, classic (analytic) and critical (not analytic). Closure equations of the HNC, PY, etc. types well known in the theory of liquids correspond to the first solution. The second solution presupposes that the bridge functional of a system has the form of the sum B = B rg + B cr, where B rg is a regular (analytic) function of density and B cr is a critical (not analytic) function. It is shown the classic solution determines the coordinates of the critical point, critical amplitudes, and the other parameters of critical phenomena depending on the individual liquid characteristics. The critical solution determines the critical indices and the equations relating them. The regions in which classic and critical solutions are valid are separated on the phase plane by a line of singular points, at which the second derivatives of pressure experience discontinuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Barmatz, J. Hahn, J. A. Lipa, and R. V. Duncan, Rev. Mod. Phys. 79(1) (2007).

  2. G. A. Martynov, J. Chem. Phys. 129, 244509 (2008).

    Google Scholar 

  3. G. A. Martynov, Phys. Rev. (in press).

  4. C. Domb, The Critical Point (Taylor Fracis, London, 1996).

    Google Scholar 

  5. D. Yu. Ivanov, Critical Behavior of Non-Ideal Systems (Wiley-VCH, 2008).

  6. R. Balesku, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1978; Mir, Moscow, 1978), Vol. 1.

    Google Scholar 

  7. A. Parola and L. Reatto, Adv. Phys. 44, 211 (1995).

    Article  CAS  Google Scholar 

  8. D. Pini, G. Stell, and N. B. Wilding, Mol. Phys. 95, 483 (1998).

    Article  CAS  Google Scholar 

  9. I. S. Höye, D. Pini, and G. Stell, Phys. A 279, 213 (2000).

    Article  Google Scholar 

  10. D. Pini and G. Stell, Phys. A 306, 270 (2002).

    Article  Google Scholar 

  11. G. A. Martynov, Fundamental Theory of Liquids (Adam Hilger, Bristol, Philadelphia, New York, 1992).

    Google Scholar 

  12. M. A. Anisimov, V. A. Rabinovich, and V. V. Sychev, Thermodynamics of Critical State of Individual Substances (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  13. E. M. Apfelbaum, V. S. Vorob’ev, and G. A. Martynov, J. Chem. Phys. 127, 064507 (2007).

    Google Scholar 

  14. I. Charpentier and N. Jakse, J. Chem. Phys. 123, 204910 (2005).

    Google Scholar 

  15. R. J. Baxter, J. Chem. Phys. 49, 2770 (1968).

    Article  CAS  Google Scholar 

  16. S. Fishman and M. Fisher, Physica A 106, 1 (1981).

    Article  Google Scholar 

  17. Yu. E. Gorbatyi and G. V. Bondarenko, Sverkhkritich. Flyuidy, Teor. Prakt. 2(2), 5 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Martynov.

Additional information

Original Russian Text © G.A. Martynov, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 10, pp. 1847–1860.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynov, G.A. Critical phenomena in liquids (theory). Russ. J. Phys. Chem. 83, 1665–1677 (2009). https://doi.org/10.1134/S0036024409100070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024409100070

Keywords

Navigation