Russian Journal of Physical Chemistry A

, Volume 83, Issue 8, pp 1295–1299 | Cite as

The kinetics of ozone decomposition in water, the influence of pH and temperature

  • B. G. ErshovEmail author
  • P. A. Morozov
Chemical Kinetics and Catalysis


The influence of pH on the kinetics of ozone decomposition in water was studied. Over the pH range 1–8, the kinetics was well described by a second-order reaction equation. Starting with approximately pH 3, the pH dependence of the logarithm of the constant at 19°C corresponded to the equation logk= −2.66 + (0.49 ± 0.03)pH. The activation energy of ozone decomposition was found to be 76.0 ± 8.3 kJ/mol.


Activation Energy Ozone Concentration Oxygen Mixture Ozone Decomposition Capillary Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Morooka, K. Ikemizu, and Y. Kato, Int. Chem. Eng. 19, 650 (1979).Google Scholar
  2. 2.
    M. Teramoto, S. Imamura, N. Yatagai, et al., J. Chem. Eng. Jpn. 14, 383 (1981).CrossRefGoogle Scholar
  3. 3.
    V. V. Tarasov, L. Tkhi, and Yu. I. Popov, Khim. Tekhnol. 6(10), 43 (2006).Google Scholar
  4. 4.
    J. L. Sotelo, F. J. Beltran, F. J. Benitez, and J. Beltran-Heredia, Ind. Eng. Chem. Res. 26(10), 39 (1987).CrossRefGoogle Scholar
  5. 5.
    Y. Ku, W.-J. Su, and Y.-S. Shen, Ind. Eng. Chem. Res. 35, 3369 (1996).CrossRefGoogle Scholar
  6. 6.
    M. M. Raukas, R. R. Munter, and E. K. Siirde, Zh. Prikl. Khim. 57, 2597 (1984).Google Scholar
  7. 7.
    M. D. Gurol and P. C. Singer, Environ. Sci. Technol. 16, 377 (1982).CrossRefGoogle Scholar
  8. 8.
    H. Bader and J. Hoigne, J. Ozone: Sci. Eng. 4(4), 169 (1982).CrossRefGoogle Scholar
  9. 9.
    J. Staehelin and J. Hoigne, Environ. Sci. Technol. 16, 676 (1982).CrossRefGoogle Scholar
  10. 10.
    J. Hoigne, H. Bader, W. R. Haag, and J. Staehelin, J. Water Res. 19, 993 (1985).CrossRefGoogle Scholar
  11. 11.
    H. Tomyasu, H. Fukutomi, and G. Gordon, Inorg. Chem. 24, 2962 (1985).CrossRefGoogle Scholar
  12. 12.
    K. Sehested, H. Corfitzen, J. Holcman, et al., Environ. Sci. Technol. 25, 1589 (1991).CrossRefGoogle Scholar
  13. 13.
    G. V. Buxton, C. L. Greenstock, W. Ph. Helman, and A. B. Ross, Phys. Chem. Ref. Data 17, 513 (1988).Google Scholar
  14. 14.
    APHA, AWWA, WEF, “Standard Methods for the Examination of Water and Wastewater” (1988), pp. 4-137–4-139.Google Scholar
  15. 15.
    K. Vandermissen, F. DeSmedt, and C. Vinckier, Ozone Sci. Tech. 30, 300 (2008).CrossRefGoogle Scholar
  16. 16.
    T. Mizuno, H. Tsuno, and H. Yamada, Ozone Sci. Tech. 29, 55 (2007).CrossRefGoogle Scholar
  17. 17.
    K. Sehested, H. Corfitzen, J. Holcman, and E. J. Hart, J. Phys. Chem. 96, 1005 (1992).CrossRefGoogle Scholar
  18. 18.
    K. Sehested, H. Corfitzen, J. Holcman, and E. J. Hart, J. Phys. Chem. 102, 2667 (1998).Google Scholar
  19. 19.
    K. Sehested, J. Holcman, E. Bjergbakke, and E. J. Hart, J. Phys. Chem. 88, 4144 (1984).CrossRefGoogle Scholar
  20. 20.
    K. Sehested, J. Holcman, and E. J. Hart, J. Phys. Chem. 87, 1951–1954 (1983).CrossRefGoogle Scholar
  21. 21.
    V. V. Lunin, M. P. Popovich, and S. N. Tkachenko, Physical Chemistry of Ozon (Mosk. Gos. Univ., Moscow, 1988) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations