Skip to main content

Modeling and calculations of the physicochemical parameters of diffusion of atomic hydrogen on the surface of differently sized nanotubes with different chiralities

Abstract

This work is concerned with modeling the diffusion of atomic hydrogen on the surface of differently sized carbon nanotubes with different chiralities. The calculations were based on the estimation of activation energy by the density functional theory method and the use of transition state theory.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Metal-Hydrogen Systems, Ed. by T. Nejat Veziroglu (Pergamon, Oxford, 1981).

    Google Scholar 

  2. 2.

    Hydrogen and Other Alternative Fuels for Air and Ground Transportation, Ed. by H. W. Pohl (Wiley, Chichester, 1995).

    Google Scholar 

  3. 3.

    S. Ijima, Nature (London) 354, 56 (1991).

    Article  Google Scholar 

  4. 4.

    P. M. Ajayan and T. W. Rep. Ebbesen, Prog. Phys. 60, 1025 (1997).

    Article  CAS  Google Scholar 

  5. 5.

    M. R. Pederson and J. Q. Broughton, Phys. Rev. Lett. 69, 2689 (1992).

    Article  CAS  Google Scholar 

  6. 6.

    A. C. Dillon, K. M. Jones, T. A. Bekkedahl, et al., Nature (London) 386, 377 (1997).

    Article  CAS  Google Scholar 

  7. 7.

    Y. Ye, C. Ahn, C. Witham, et al., Appl. Phys. Lett. 74, 2307 (1999).

    Article  CAS  Google Scholar 

  8. 8.

    C. Liu, Y. Y. Fan, M. Liu, et al., Science (Washington, D.C.) 286, 1127 (1999).

    Article  CAS  Google Scholar 

  9. 9.

    C. Nutzenadel, H. Zuttel, D. Chartouni, and L. Schlaphach, Electrochem. Solid State Lett. 2, 30 (1999).

    Article  CAS  Google Scholar 

  10. 10.

    N. Rajalakshmi, K. S. Dhathathreyan, A. Govindaraj, and B. C. Satishkumar, Electrochim. Acta 45, 4511 (2000).

    Article  CAS  Google Scholar 

  11. 11.

    A. S. Fedorov and S. G. Ovchinnikov, Phys. Solid State 46, 584 (2004).

    Article  CAS  Google Scholar 

  12. 12.

    A. S. Fedorov and P. B. Sorokin, Phys. Solid State 48, 377 (2006).

    Article  Google Scholar 

  13. 13.

    G. Stan and M. W. Cole, J. Low Temp. Phys. 110, 539 (1998).

    Article  CAS  Google Scholar 

  14. 14.

    P. Chen, X. Wu, J. Lin, and K. L. Tan, Science (Washingron, D.C.) 285, 91 (1999).

    Article  CAS  Google Scholar 

  15. 15.

    R. T. Yang, Carbon 38, 623 (2000).

    Article  CAS  Google Scholar 

  16. 16.

    Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. 127, 14582 (2005).

    Article  CAS  Google Scholar 

  17. 17.

    W. C. Conner, Jr. and J. L. Falconer, Chem. Rev. 95, 759 (1995).

    Article  CAS  Google Scholar 

  18. 18.

    P. Hohenberg and W. Kohn, Phys. Rev. B: Condens. Matter 136, 864 (1964).

    Google Scholar 

  19. 19.

    W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  20. 20.

    G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993).

    Article  CAS  Google Scholar 

  21. 21.

    G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 49, 14251 (1994).

    Article  CAS  Google Scholar 

  22. 22.

    G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).

    Article  CAS  Google Scholar 

  23. 23.

    D. Vanderbilt, Phys. Rev. B: Condens. Matter 41, 7892 (1990).

    Article  Google Scholar 

  24. 24.

    G. Henkelman, B. P. Uberuaga, and H. J. Jonsson, Chem. Phys. 113, 9901 (2000).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. N. Popov.

Additional information

Original Russian Text © A.A. Kuzubov, R.P. Avramov, M.A. Raimova, M.N. Popov, Yu.M. Milyutina, T.A. Kozhevnikova, P.V. Artyushenko, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 4, pp. 753–757.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuzubov, A.A., Avramov, R.P., Raimova, M.A. et al. Modeling and calculations of the physicochemical parameters of diffusion of atomic hydrogen on the surface of differently sized nanotubes with different chiralities. Russ. J. Phys. Chem. 83, 649–653 (2009). https://doi.org/10.1134/S0036024409040220

Download citation

Keywords

  • Hydrogen Atom
  • Neighboring Node
  • Adsorbed Hydrogen
  • Density Functional Theory Method
  • Tube Surface