Skip to main content
Log in

Nonempirical studies of the molecular properties and thermodynamic functions of urea in the ideal gas state

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Quantum-chemical calculations were performed for the equilibrium structure of isolated urea molecules using the 6-311++G** basis set and second-order Möller-Plesset perturbation theory, density functional theory, and the coupled cluster method with the local inclusion of electron correlation. The results were used to perform statistical calculations of the standard thermodynamic functions of urea in the ideal gas state taking into account anharmonicity of normal vibrations. The contributions of dimerization and isomerization of urea molecules in the vapor phase were determined. The recommended values were compared with the available experimental data and the results of preceding calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Antonov, Zh. Obshch. Khim. 34(7), 2340 (1964).

    CAS  Google Scholar 

  2. M. L. Frenkel’, E. A. Gusev, and G. Ya. Kabo, Zh. Prikl. Khim. 56(1), 212 (1983).

    Google Scholar 

  3. O. V. Dorofeeva and P. I. Tolmach, Thermochim. Acta 240, 47 (1994).

    Article  CAS  Google Scholar 

  4. Y. Saito, K. Machida, and T. Uno, Spectrochim. Acta, Part A 27(7), 991 (1971).

    Article  CAS  Google Scholar 

  5. P. D. Godfrey, R. D. Brown, and A. N. Hunter, J. Mol. Struct. 413–414, 405 (1997).

    Article  Google Scholar 

  6. M. Spoliti, A. Pieretti, L. Bencivenni, and N. Sanna, Electr. J. Theor. Chem. 2, 149 (1997).

    Article  CAS  Google Scholar 

  7. B. Kallies and R. Mitzner, J. Mol. Model. 4(6), 183 (1998).

    Article  CAS  Google Scholar 

  8. B. Rousseau, C. Van Alsenoy, R. Keuleers, and H. O. Desseyn, J. Phys. Chem. A 102, 6540 (1998).

    Article  CAS  Google Scholar 

  9. A. Masunov and J. J. Dannenberg, J. Phys. Chem. A 103, 178 (1999).

    Article  CAS  Google Scholar 

  10. R. Keuleers, H. O. Desseyn, B. Rousseau, and C. Van Alsenoy, J. Phys. Chem. A 103, 4621 (1999).

    Article  CAS  Google Scholar 

  11. C. A. Tsipis and P. A. Karipidis, J. Am. Chem. Soc. 125(8), 2307 (2003).

    Article  CAS  Google Scholar 

  12. G. Estiu and K. M. Merz, Jr., J. Am. Chem. Soc. 126(22), 6932 (2004).

    Article  CAS  Google Scholar 

  13. T. Ishida and P. J. Rossky, J. Phys. Chem. B 108, 17583 (2004).

    Article  CAS  Google Scholar 

  14. C. A. Tsipis and P. A. Karipidis, J. Phys. Chem. A 109(3), 8560 (2005).

    Article  CAS  Google Scholar 

  15. S. T. King, Spectrochim. Acta, Part A 28, 165 (1972).

    Article  CAS  Google Scholar 

  16. X. Li, S. J. Stotesbury, and U. A. Jayasooriya, Spectrochim. Acta, Part A 43, 1595 (1987).

    Article  Google Scholar 

  17. H.-J. Werner and P. J. Knowles, MOLPRO: A Package of Ab initio Programs, Version 2006.1 (2006).

  18. C. Hampel and H.-J. Werner, J. Chem. Phys. 104, 6286 (1996).

    Article  CAS  Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision C.02 (Gaussian Inc., Wallingford, CT, 2004).

    Google Scholar 

  20. C. A. Tsipis and P. A. Karipidis, J. Am. Chem. Soc. 125(8), 2307 (2003).

    Article  CAS  Google Scholar 

  21. R. D. Brown, P. D. Godfrey, and J. Storey, J. Mol. Spectrosc. 58, 445 (1975).

    Article  CAS  Google Scholar 

  22. JANAF Thermochemical Tables (Part I, Al-Co; Part II, Cr-Zr), J. Phys. Chem. Ref. Data. 14(Suppl. 1), 185 (1985).

  23. G. Ya. Kabo, E. A. Miroshnichenko, M. L. Frenkel’, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 4, 750 (1990).

  24. H. G. M. De Wit, J. C. van Miltenburg, and C. G. de Kruif, J. Chem. Thermodyn. 15, 651 (1983).

    Article  Google Scholar 

  25. A. A. Kozyro, S. V. Dalidovich, and A. P. Krasulin, Zh. Prikl. Khim. 59(7), 1456 (1986).

    CAS  Google Scholar 

  26. A. P. Krasulin, A. A. Kozyro, and G. Ya. Kabo, Zh. Prikl. Khim. 60(1), 104 (1987).

    CAS  Google Scholar 

  27. Dz. Zaitsau, G. J. Kabo, A. A. Kozyro, and V. M. Sevruk, Thermochim. Acta 406, 17 (2003).

    Article  CAS  Google Scholar 

  28. G. J. Kabo, A. A. Kozyro, V. V. Diky, and V. V. Simirsky, J. Chem. Eng. Data 40, 371 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuznetsov.

Additional information

Original Russian Text © A.V. Kuznetsov, A.V. Stolyarov, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 2, pp. 339–345.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, A.V., Stolyarov, A.V. Nonempirical studies of the molecular properties and thermodynamic functions of urea in the ideal gas state. Russ. J. Phys. Chem. 83, 270–275 (2009). https://doi.org/10.1134/S0036024409020216

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024409020216

Keywords

Navigation