Skip to main content
Log in

The use of the embedded atom model for liquid metals: Liquid potassium

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The method for calculations the embedded atom potential for liquid metals based on the diffraction data on the structure close to the melting temperature was applied to potassium. The embedded atom potential parameters were adjusted using the data on the structure of potassium at 343, 473, and 723 K and the thermodynamic properties of potassium at temperatures up to 37240 K. The use of the molecular dynamics method and the embedded atom potential gave close agreement with the experimental data on the structure, density, and potential energy of liquid metal along the p ≅ 0 isobar at temperatures up to 2200 K and along the shock adiabat up to a pressure of ∼85 GPa and 37240 K. The calculated bulk compression modulus at 343 K was close to its actual value, and the self-diffusion coefficients increased under isobaric heating conditions following a power law with an exponent of 1.6478. The melting temperature of body-centered potassium with the embedded atom potential was (319 ± 1) K, which was close to the actual melting temperature. The potential obtained incorrectly described crystalline potassium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. K. Belashchenko and O. I. Ostrovskii, Zh. Fiz. Khim. 80(4), 602 (2006) [Russ. J. Phys. Chem. 80 (4), 509 (2006)].

    Google Scholar 

  2. D. K. Belashchenko, Zh. Fiz. Khim. 80(5), 872 (2006) [Russ. J. Phys. Chem. 80 (5), 758 (2006)].

    Google Scholar 

  3. D. K. Belashchenko and O. I. Ostrovskii, Teplofiz. Vys. Temp. 44(5), 682 (2006).

    Google Scholar 

  4. D. K. Belashchenko, Zh. Fiz. Khim. 80(10), 1767 (2006) [Russ. J. Phys. Chem. 80 (10), 1567 (2006)].

    Google Scholar 

  5. D. K. Belashchenko, O. L. Kuskov, and O. I. Ostrovskii, Neorg. Mater. 43(9), 1113 (2007) [Inorg. Mater. 43 (9), 998 (2007)].

    Article  Google Scholar 

  6. W. Schommers, Phys. Rev. A: At., Mol., Opt. Phys. 28, 3599 (1983).

    CAS  Google Scholar 

  7. D. K. Belashchenko, Computer Simulation of Liquid and Amorphous Substances (Mosk. Inst. Stali i Splavov, Moscow, 2005) [in Russian].

    Google Scholar 

  8. M. M. Martynyuk, Phase Transitions under Pulse Heating (Izd. Ross. Univ. Druzhby Narodov, Moscow, 1999) [in Russian].

    Google Scholar 

  9. http://www.webelements.com.

  10. P. I. Bystrov, D. N. Kagan, G. A. Krechetova, and E. E. Shpil’rain, Liquid Metal Heat Carriers for Heat Tubes and Power Plants (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  11. L. I. Tatarinova, The Structure of Solid Amorphous and Liquid Substances (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  12. Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids (McGraw-Hill, New York, 1980).

    Google Scholar 

  13. http://www.tagen.tohoku.as.jr/general/building/iamr/database/ssm/LIQ/gr.html.

  14. G. E. Norman and V. V. Stegailov, Mol. Simul. 30(6), 397 (2004).

    Article  CAS  Google Scholar 

  15. A. Y. Kuksin, I. V. Morozov, G. E. Norman, et al., Mol. Simul. 31(14–15), 1005 (2005).

    Article  CAS  Google Scholar 

  16. J. Rohlin and A. Lodding, Z. Naturforsch., A: Phys. Sci. 17, 1081 (1962).

    Google Scholar 

  17. D. A. Young and M. Ross, Phys. Rev. B: Condens. Matter 29(2), 682 (1984).

    Article  CAS  Google Scholar 

  18. LASL Shock Hugoniot Data, Ed. by S. P. Marsh (Univ. California Press, Berkeley, CA, 1979), p. 672.

    Google Scholar 

  19. M. V. Zhernokletov, V. N. Zubarev, R. F. Trunin, et al., Experimantal Data on Shock Compressibility and Adiabatic Expansion of Condensed Substances at High Energy Densities (VNIIEF, Chernogolovka, 1996) [in Russian].

    Google Scholar 

  20. D. K. Belashchenko and O. I. Ostrovskii, Zh. Fiz. Khim. 82(3), 443 (2008) [Russ. J. Phys. Chem. A 82 (3), 364 (2008)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Belashchenko.

Additional information

Original Russian Text © D.K. Belashchenko, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 2, pp. 329–333.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belashchenko, D.K. The use of the embedded atom model for liquid metals: Liquid potassium. Russ. J. Phys. Chem. 83, 260–264 (2009). https://doi.org/10.1134/S0036024409020198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024409020198

Keywords

Navigation