Skip to main content
Log in

The electronic structures and spectra of conducting pentacene derivatives

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A, Focus on Chemistry Aims and scope Submit manuscript

Abstract

Theoretical studies of pentacene and a series of its derivatives were performed using the PM3 and DFT methods. Based on B3LYP/6-31G(d) optimized geometries, the electronic, IR, and 13C NMR spectra of the derivatives were calculated using the INDO/CIS, PM3, and B3LYP/6-31G(d) methods, respectively. The energy gaps of the derivatives decreased as the chain length increased and electron-withdrawing substituents were introduced. The polymer based on pentacene, especially in the presence of trimethylsilylacetylene, offers promise as an excellent conducting polymer. The main absorption bands in the electronic spectra of the derivatives compared with those of pentacene were shifted to the red, whereas the IR frequencies for some of the C=C and C-H bonds were shifted to the blue. The 13C chemical shifts of the carbon atoms connected with electron-withdrawing substituents were shifted upfield, while those of the bridged carbon atoms in the middle part of the pentacene unit shifted downfield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Shavlov, A. D. Pisarev, and A. A. Ryabtseva, Russ. J. Phys. Chem. A 81, 1180 (2007).

    Google Scholar 

  2. Yu. V. Emel’yanova, R. R. Shafigina, E. S. Buyanova, et al., Russ. J. Phys. Chem. A 80, 1725 (2006).

    Article  CAS  Google Scholar 

  3. D. Antypov and C. Holm, Macromolecules 40, 731 (2007).

    Article  CAS  Google Scholar 

  4. L. T. Nielsen, K. H. Vase, M. Dong, et al., J. Am. Chem. Soc. 129, 1888 (2007).

    Article  CAS  Google Scholar 

  5. H. Goto, Macromolecules 40, 1377 (2007).

    Article  CAS  Google Scholar 

  6. Y. Zhang, E. J. Fechter, T.-S. A. Wang, et al., J. Am. Chem. Soc. 129, 3080 (2007).

    Article  CAS  Google Scholar 

  7. P. Luksic and T. Pisanski, J. Chem. Inf. Model., Published on Web 05/10/2007.

  8. Z. Dong, X. Liu, G. P. A. Yap, and J. M. Fox, J. Org. Chem. 72, 617 (2007).

    Article  CAS  Google Scholar 

  9. D.-J. Hong, E. Lee, and M. Lee, Chem. Commun., p. 1801 (2007).

  10. C. G. C. Jr, R. J. Wenzel, E. V. Andreitchenko, et al., J. Am. Chem. Soc. 129, 3292 (2007).

    Article  Google Scholar 

  11. J. Jiang, B. R. Kaafarani, and D. C. Neckers, J. Org. Chem. 71, 2155 (2006).

    Article  CAS  Google Scholar 

  12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision B.01 (Gaussian Inc., Pittsburgh, PA, 2003).

    Google Scholar 

  13. J. Chen, S. Chen, and Q. Teng, J. Indian Chem. Soc. 84, 263 (2007).

    CAS  Google Scholar 

  14. C. Yan, N. Su, and S. Wu, Russ. J. Phys. Chem. 81(12), 1980 (2007).

    Article  CAS  Google Scholar 

  15. L. Zhu, Q. Teng, and S. Wu, Chem. J. Chinese Universities 27, 680 (2006).

    CAS  Google Scholar 

  16. L. Ding, Y. Ding, Q. Teng, and K. Wang, J. Chinese Chem. Soc. 54(4), 853 (2007).

    CAS  Google Scholar 

  17. S. Wu, Q. Teng, and S. Chen, Chinese J. Chem. 25, 149 (2007).

    Article  CAS  Google Scholar 

  18. X. Chen, Q. Teng, S. Wu, and L. Xu, Indian J. Chem. Sec. A 46, 391 (2007).

    Google Scholar 

  19. Q. Teng and S. Wu, Int. J. Quantum Chem. 104, 279 (2005).

    Article  CAS  Google Scholar 

  20. S. Wu and Q. Teng, Int. J. Quantum Chem. 106, 526 (2006).

    Article  CAS  Google Scholar 

  21. Q. Teng and S. Wu, J. Mol. Struct. (THEOCHEM) 719, 47 (2005).

    Article  CAS  Google Scholar 

  22. Q. Teng and S. Wu, J. Mol. Struct. (THEOCHEM) 756, 103 (2005).

    Article  CAS  Google Scholar 

  23. M. F. Budyka, G. V. Shilov, N. V. Biktimirova, et al., Russ. J. Phys. Chem. A 80, S49 (2006).

    Article  CAS  Google Scholar 

  24. M. Monajjemi, B. Honarparvar, H. H. Haeri, and M. Heshmat, Russ. J. Phys. Chem. A 80, S40 (2006).

    Article  CAS  Google Scholar 

  25. D. A. Pichugina, A. F. Shestakov, and N. E. Kuz’menko, Russ. J. Phys. Chem. A 81, 883 (2007).

    Article  CAS  Google Scholar 

  26. M. A. Thompson and M. C. Zerner, J. Am. Chem. Soc. 113, 8210 (1991).

    Article  CAS  Google Scholar 

  27. L. Yang, A. M. Ren, J. K. Feng, and J. F. Wang, J. Org. Chem. 70, 3009 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Wu, S. & Zhang, Y. The electronic structures and spectra of conducting pentacene derivatives. Russ. J. Phys. Chem. 82, 2293–2298 (2008). https://doi.org/10.1134/S0036024408130220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024408130220

Keywords

Navigation