Skip to main content
Log in

The catalytic properties and stability of β-galactosidases from fungi

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A, Focus on Chemistry Aims and scope Submit manuscript

Abstract

The catalytic activity of β-galactosidases from fungi Penicillium canescens and Aspergillus oryzae is maximum in a weakly acidic medium and does not depend on the presence of magnesium cations in the reaction medium. The enzyme from Aspergillus oryzae fungi is more active, and that from Penicillium canescens is stabler. One of stability indications is the presence of an induction period in the kinetic curves of thermal inactivation. This period disappears at 54°C for the enzyme from Aspergillus oryzae and at 59°C for the enzyme from Penicillium canescens. The temperature dependences of the effective rate constants for the inactivation of the tetrameric enzyme from Penicillium canescens show that the main reason for enzyme inactivation is the dissociation of oligomeric forms below 66°C (E act = 85 kJ/mol) and enzyme denaturation at higher temperatures (E act = 480 kJ/mol). The dissociation stage is absent for monomeric β-galactosidase from Aspergillus oryzae fungi, and the activation energy of inactivation is 450 kJ/mol over the whole temperature range studied (53–60°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Albayrak and St. Yang, Biotechnol. Bioeng. 77(1), 8 (2002).

    Article  CAS  Google Scholar 

  2. R. Gaur, H. Pant, R. Jain, and S. R. Khare, Food Chem. 97(3), 426 (2006).

    Article  CAS  Google Scholar 

  3. W. Bednarski and A. Kulikowska, Chem. Pap. 61(5), 364 (2007).

    Article  CAS  Google Scholar 

  4. Y.-J. Lee, C. S. Kim, and D. K. Oh, Appl. Microbiol. Biotechnol. 64, 787 (2004).

    Article  CAS  Google Scholar 

  5. Y.-S. Kim, C.-S. Park, and D.-K. Oh, Enzyme Microb. Technol. 39(4), 903 (2006).

    Article  CAS  Google Scholar 

  6. I. V. Nikolaev, O. V. Bekker, V. A. Serebryan, and Yu. P. Vinetskii, Biotekhnol. 3, 3 (1999).

    Google Scholar 

  7. M. Machida, K. Asai, M. Sano, et al., Nature (London) 438, 1157 (2005).

    Article  Google Scholar 

  8. Y. Tanaka, A. Kagamiishi, A. Kiuchi, and T. Horiushi, J. Biochem. 77, 241 (1975).

    CAS  Google Scholar 

  9. A. A. Shishkin, O. M. Poltorak, E. S. Chukhrai, et al., Zh. Fiz. Khim. 64(8), 2169 (1990).

    CAS  Google Scholar 

  10. L. F. Atyaksheva, O. S. Pilipenko, O. M. Poltorak, and E. S. Chukhrai, Zh. Fiz. Khim. 81(7), 1313 (2007) [Russ. J. Phys. Chem. A 81 (7), 1156 (2007)].

    Google Scholar 

  11. O. S. Pilipenko, L. F. Atyaksheva, O. M. Poltorak, and E. S. Chukhrai, Zh. Fiz. Khim. 81(6), 1130 (2007) [Russ. J. Phys. Chem. A 81 (6), 990 (2007)].

    Google Scholar 

  12. O. M. Poltorak and E. S. Chukhrai, Itogi Nauki Tekhn., Ser. Biotekhnologiya 5, 50 (1987).

    Google Scholar 

  13. A. E. Lyubarev and B. I. Kurganov, Usp. Biol. Khim. 40, 43 (2000).

    CAS  Google Scholar 

  14. S. Yoshioka, Y. Aso, K. Izutsu, and S. Kojima, Pharm. Res. 11(12), 172 (1994).

    Article  Google Scholar 

  15. G. I. Makhatadze and P. L. Privalov, Adv. Protein Chem. 47, 307 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Poltorak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilipenko, O.S., Atyaksheva, L.F., Poltorak, O.M. et al. The catalytic properties and stability of β-galactosidases from fungi. Russ. J. Phys. Chem. 82, 2250–2254 (2008). https://doi.org/10.1134/S0036024408130165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024408130165

Keywords

Navigation