Skip to main content
Log in

The special features of equilibrium adsorption of argon on homogeneous and inhomogeneous surfaces

  • Physical Chemistry of Surface Phenomena
  • Published:
Russian Journal of Physical Chemistry A, Focus on Chemistry Aims and scope Submit manuscript

Abstract

Comparative patterns of equilibrium adsorption of argon on the surface of graphitized thermal carbon black (GCB) and the inhomogeneous surfaces of nongraphitized carbon black and silica at 77 and 87.3 K were considered. It was shown that argon acquires the properties of a special phase with a layered structure and exhibits two-dimensional phase transitions with the formation of crystal-like layers near the homogeneous surface of GCB even at a temperature exceeding the triple point. However, already at a distance of three-four molecular diameters from the surface, adsorbed argon behaves as a bulk phase in a weak external field. The defect surface of nongraphitized carbon black and the amorphous surface structure of silica destroy the longrange order of adsorbed argon and lower its solidification temperature. Therefore, argon adsorbed at a temperature of 77 K, i.e., below the triple point, exhibits the properties of a supercooled liquid. The applicability of density functional theory to describe argon isotherms and heat of adsorption on inhomogeneous surfaces was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).

    Article  CAS  Google Scholar 

  2. G. M. Kaganer, Dokl. Akad. Nauk SSSR 116, 603 (1952).

    Google Scholar 

  3. C. Lastoskie, K. E. Gubbins, and N. Quirke, J. Phys. Chem. 97, 4786 (1992).

    Article  Google Scholar 

  4. M. W. Maddox, J. P. Olivier, and K. E. Gubbins, Langmuir 13, 1737 (1997).

    Article  CAS  Google Scholar 

  5. L. D. Gelb, Mol. Phys. 100, 2049 (2002).

    Article  CAS  Google Scholar 

  6. A. Vishnyakov and A. V. Neimark, J. Chem. Phys. 119, 9755 (2003).

    Article  CAS  Google Scholar 

  7. B. Coasne and R. J.-M. Pellenq, J. Chem. Phys. 120, 2913 (2004).

    Article  CAS  Google Scholar 

  8. M. W. Maddox, N. Quirke, and K. E. Gubbins, Mol. Simul. 19, 267 (1997).

    Article  CAS  Google Scholar 

  9. P. Tarazona, Phys. Rev. A: At., Mol., Opt. Phys. 31, 2672 (1985).

    CAS  Google Scholar 

  10. P. Tarazona, U. M. B. Marconi, and R. Evans, Mol. Phys. 60, 573 (1987).

    Article  CAS  Google Scholar 

  11. J. P. Olivier, W. B. Conklin, and M. Szombathely, Stud. Surf. Sci. Catal. 87, 81 (1994).

    Article  CAS  Google Scholar 

  12. J. P. Olivier, J. Porous Mater. 2, 9 (1995).

    Article  CAS  Google Scholar 

  13. P. I. Ravikovitch, D. Wei, W. T. Chueh, et al., J. Phys. Chem. B 101, 3671 (1997).

    Article  CAS  Google Scholar 

  14. P. I. Ravikovitch and A. V. Neimark, Colloids Surf., A 187–188, 11 (2001).

    Article  Google Scholar 

  15. D. D. Do, H. D. Do, and K. Kaneko, Langmuir 20, 7623 (2004).

    Article  CAS  Google Scholar 

  16. D. D. Do and H. D. Do, Colloids Surf., A 300, 50 (2007).

    Article  CAS  Google Scholar 

  17. E. A. Ustinov, D. D. Do, and M. Jaroniec, Appl. Surf. Sci. 252, 548 (2005).

    Article  CAS  Google Scholar 

  18. E. A. Ustinov, D. D. Do, and M. Jaroniec, Langmuir 22, 6238 (2006).

    Article  CAS  Google Scholar 

  19. E. A. Ustinov, D. D. Do, and V. B. Fenelonov, Appl. Surf. Sci. 253, 5610 (2007).

    Article  CAS  Google Scholar 

  20. P. I. Ravikovitch and A. V. Neimark, Langmuir 22, 11171 (2006).

  21. Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).

    Article  CAS  Google Scholar 

  22. E. Kierlik and M. L. Rosinberg, Phys. Rev. A: At., Mol., Opt. Phys. 42, 3382 (1990).

    Google Scholar 

  23. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).

    Article  CAS  Google Scholar 

  24. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).

    Article  CAS  Google Scholar 

  25. W. A. Steele, Surf. Sci. 36, 317 (1973).

    Article  CAS  Google Scholar 

  26. L. Gardner, M. Kruk, and M. Jaroniec, J. Phys. Chem. B 105, 12516 (2001).

    Google Scholar 

  27. M. Kruk and M. Jaroniec, Chem. Mater. 12, 222 (2000).

    Article  CAS  Google Scholar 

  28. M. Kruk and M. Jaroniec, J. Phys. Chem. B 106, 4732 (2002).

    Article  CAS  Google Scholar 

  29. E. A. Ustinov and D. D. Do, Carbon 44, 2652 (2006).

    Article  CAS  Google Scholar 

  30. J. Rouquerol, S. Partyka, and F. Rouquerol, J. Chem. Soc., Faraday Trans. 73, 306 (1977).

    Article  CAS  Google Scholar 

  31. G. Birkett and D. D. Do, J. Phys. Chem. 126, 064702 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ustinov.

Additional information

Original Russian Text © E.A. Ustinov, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 12, pp. 2367–2375.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ustinov, E.A. The special features of equilibrium adsorption of argon on homogeneous and inhomogeneous surfaces. Russ. J. Phys. Chem. 82, 2134–2141 (2008). https://doi.org/10.1134/S0036024408120285

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024408120285

Keywords

Navigation