Skip to main content
Log in

To the theory of homogeneous nucleation: Cluster energy

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A, Focus on Chemistry Aims and scope Submit manuscript

Abstract

An attempt is made to critically analyze the modern state of the theory of homogeneous nucleation as concerns its ability to describe experiments with high accuracy. An analysis of the experimental data led us to conclude that the dependence of the nucleation rate on supersaturation and temperature T was not described by the theory, which underestimates the critical cluster size compared with the Gibbs-Thomson equation. The possibility of applying density functional theory (one of the latest achievements in the theory of homogeneous nucleation) was questioned. Within this theory, the Gibbs-Thomson equation remains valid even outside the classic capillary approximation. It is suggested that, to bring theory in consistency with experiment, certain fundamental propositions of the theory of nucleation should be revised. The inclusion of an additional contribution to the Gibbs energy of a cluster caused by the size dependence of the specific heat capacity of the cluster decreases the critical cluster size compared with the value calculated by the Gibbs-Thomson equation. The calculated dependence of nucleation rate on supersaturation was in agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Becker and W. Döring, Ann. Phys. (New York) 24, 719 (1935).

    CAS  Google Scholar 

  2. D. W. Oxtoby, J. Phys.: Condens. Matter 4, 7627 (1992).

    Article  Google Scholar 

  3. J. L. Katz, J. Chem. Phys. 52, 4733 (1970).

    Article  CAS  Google Scholar 

  4. C.-H. Hung, M. J. Krasnopoler, and J. L. Katz, J. Chem. Phys. 90, 1856 (1989).

    Article  CAS  Google Scholar 

  5. J. L. Schmitt, G. W. Adams, and R. A. Zalabsky, J. Chem. Phys. 77, 2089 (1982).

    Article  CAS  Google Scholar 

  6. P. E. Wagner and R. Strey, J. Chem. Phys. 80, 5266 (1984).

    Article  CAS  Google Scholar 

  7. S. L. Girshick and C.-P. Chiu, J. Chem. Phys. 93, 1273 (1990).

    Article  CAS  Google Scholar 

  8. A. Dillmann and G. E. Meier, J. Chem. Phys. 94, 3872 (1991).

    Article  CAS  Google Scholar 

  9. J. Merikanto, H. Vehkamaki, and E. Zapadinsky, J. Chem. Phys. 121, 914 (2004).

    Article  CAS  Google Scholar 

  10. B. Chen, I. J. Siepmann, and M. L. Klein, J. Phys. Chem., p. 1137 (2005).

  11. H. Vehkamaki and I. J. Ford, J. Chem. Phys. 112, 4193 (2000).

    Article  CAS  Google Scholar 

  12. K. Yasuoka and M. Matsumoto, J. Chem. Phys. 109, 8463 (1998).

    Article  CAS  Google Scholar 

  13. H. Reiss, W. K. Kegel, and J. L. Katz, Phys. Rev. Lett. 78, 4506 (1997).

    Article  CAS  Google Scholar 

  14. D. W. Oxtoby, Ann. Rev. Mater. Res. 32, 39 (2002).

    Article  CAS  Google Scholar 

  15. J. Wolk and R. Strey, J. Phys. Chem. B 105, 11683 (2001).

  16. D. Kashchiev, J. Chem. Phys. 76, 5098 (1982).

    Article  CAS  Google Scholar 

  17. D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworths-Heinemann, Oxford, 2000).

    Google Scholar 

  18. A. A. Lushnikov and M. Kulmala, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 58, 3157 (1998).

    CAS  Google Scholar 

  19. A. Laaksonen and R. McGraw, Europhys. Lett. 35, 367 (1996).

    Article  CAS  Google Scholar 

  20. R. McGraw and A. Laaksonen, Phys. Rev. Lett. 76, 2754 (1996).

    Article  CAS  Google Scholar 

  21. J. Wolk, R. Strey, C. H. Heath, and B. E. Wyslouzil, J. Chem. Phys. 117, 4954 (2002).

    Article  CAS  Google Scholar 

  22. L. D. Landau and E. M. Lifshits, Statistical Physics, Parts 1 and 2, 3rd ed. (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  23. S. Shin, W.-J. Son, and S. J. Jang, J. Mol. Struct. (Theochem) 673, 109 (2004).

    Article  CAS  Google Scholar 

  24. R. M. Nyquist, V. Talanquer, and D. W. Oxtoby, J. Chem. Phys. 103, 1175 (1995).

    Article  CAS  Google Scholar 

  25. V. Holten, D. G. Labetski, and M. E. H. van Dongen, J. Chem. Phys. 123, 104505 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Agranovskii.

Additional information

Original Russian Text © I.S. Al’tman, I.E. Agranovskii, M. Choi, V.A. Zagainov, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 12, pp. 2325–2331.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al’tman, I.S., Agranovskii, I.E., Choi, M. et al. To the theory of homogeneous nucleation: Cluster energy. Russ. J. Phys. Chem. 82, 2097–2102 (2008). https://doi.org/10.1134/S0036024408120224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024408120224

Keywords

Navigation