Skip to main content
Log in

The catalytic properties of alkaline phosphatases under various conditions

  • Biophysical Chemistry
  • Published:
Russian Journal of Physical Chemistry A, Focus on Chemistry Aims and scope Submit manuscript

Abstract

A comparative study was performed to examine the catalytic properties of alkaline phosphatases from bacteria Escherichia coli and bovine and chicken intestines. The activity of enzyme dimers and tetramers was determined. The activity of the dimer was three or four times higher than that of the tetramer. The maximum activity and affinity for 4-nitrophenylphosphate was observed for the bacterial alkaline phosphatase (K M = 1.7 × 10−5 M, V max = 1800 μmol/(min mg of protein) for dimers and V max = 420 μmol/(min mg of protein) for tetramers). The Michaelis constants were equal for two animal phosphatases in various buffer media (pH 8.5) ((3.5 ± 0.2) × 10−4 M). Five buffer systems were investigated: tris, carbonate, hepes, borate, and glycine buffers, and the lowest catalytic activity of alkaline phosphatases at equal pH was observed in the borate buffer (for enzyme from bovine intestine, V max = 80 μmol/(min mg of protein)). Cu2+ cations formed a complex with tris-(oxymethyl)-aminomethane (tris-HCl buffer) and inhibited the intestine alkaline phosphatases by a noncompetitive mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. McComb, G. N. Bowers, and S. Posen, Alkaline Phosphatases (Plenum, New York, 1979).

    Google Scholar 

  2. E. E. Kim and H. W. Wyckoff, Clin. Chim. Acta 186, 175 (1990).

    Article  CAS  Google Scholar 

  3. M. H. le Du, T. Stigbrand, M. J. Taussig, et al., J. Biol. Chem. 276, 9158 (2001).

    Article  Google Scholar 

  4. M. de Backer, S. McSweeney, H. B. Rasmussen, et al., J. Mol. Biol. 318, 1265 (2002).

    Article  Google Scholar 

  5. E. Wang, D. Koutsioulis, H.-K. S. Leiros, et al., J. Mol. Biol. 366, 1318 (2007).

    Article  CAS  Google Scholar 

  6. R. A. Thomas and J. F. Kirsch, Biochemistry 23, 5328 (1980).

    Article  Google Scholar 

  7. G. F. Verpooten, M. F. Hoylaerts, E. J. Nouwen, and M. E. de Broe, Clin. Chim. Acta 186, 225 (1990).

    Article  CAS  Google Scholar 

  8. E. Sarciron and A.-F. Petavy, J. Parasitology 80, 667 (1994).

    Article  Google Scholar 

  9. S. Zarra, J. Boudrant, and E. R. Kantrowitz, J. Inorg. Biochem. 98, 575 (2004).

    Article  Google Scholar 

  10. S. Organovic and M. Pavela-Vrancic, Eur. J. Biochem. 270, 4356 (2003).

    Article  Google Scholar 

  11. M. Bortolato, F. Besson, and B. Roux, Proteins: Struct., Funct., Genet. 37, 310 (1999).

    Article  CAS  Google Scholar 

  12. Q.-X. Chen, W.-Z. Zheng, J.-Y. Lin, et al., Int. J. Biochem. Cell Biol. 32, 879 (2000).

    Article  CAS  Google Scholar 

  13. J. Wang, K. A. Steiglitz, and E. R. Kantrowitz, Biochemistry 44, 8378 (2005).

    Article  CAS  Google Scholar 

  14. B. I. Kurganov, Allosteric Enzymes (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  15. C. J. Martin, J. Inorg. Biochem. 58, 89 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Poltorak.

Additional information

Original Russian Text © L.F. Atyaksheva, E.S. Chukhrai, O.M. Poltorak, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 11, pp. 2164–2169.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atyaksheva, L.F., Chukhrai, E.S. & Poltorak, O.M. The catalytic properties of alkaline phosphatases under various conditions. Russ. J. Phys. Chem. 82, 1947–1951 (2008). https://doi.org/10.1134/S0036024408110265

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024408110265

Keywords

Navigation