Skip to main content
Log in

Thermal transformations in nanosized MoO3 layers

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A, Focus on Chemistry Aims and scope Submit manuscript

Abstract

The degree of the transformation of MoO3 films (d= 8–130 nm) increased as the duration (1–140 min) and temperature (373–573 K) of thermal treatment grew and as the film thickness decreased under atmospheric conditions. The thermal treatment of MoO3 films decreased the optical density at λ = 350 nm and caused the appearance of an absorption maximum at λ = 870 nm. A mechanism of thermal transformations of MoO3 was suggested. The mechanism included the formation of the [(V a)++e] center during the preparation and thermal treatment of MoO3 films and thermal electron transition from the valence band to the [(V a)++e] center level with the formation of the [e(Va)++e] center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. D. Tret’yakov, Chemistry of Nonstoichiometric Oxides (Mosk. Gos. Univ., Moscow, 1974) [in Russian].

    Google Scholar 

  2. V. B. Lazarev, V. V. Sobolev, and I. S. Shaplygin, Chemical and Physical Properties of Simple Metal Oxides (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  3. A. T. Vas’ko, Electrochemistry of Molybdenum and Tungsten (Naukova Dumka, Kiev, 1977) [in Russian].

    Google Scholar 

  4. A. R. Lusis, Ya. K. Klyavin’, and Ya. Ya. Kleperis, Elektrokhimiya 18(11), 1538 (1982).

    CAS  Google Scholar 

  5. Yu. Ya. Gurevich, Solid Electrolytes (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  6. A. R. Lusis and Ya. Ya. Kleperis, Elektrokhimiya 28(10), 1450 (1992).

    Google Scholar 

  7. V. N. Vertoprakhov and E. G. Sal’man, Thermally Stimulated Current in Inorganic Materials (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  8. A. L. Shkol’nik, Izv. Akad. Nauk SSSR, Ser. Fiz. 31(12), 2030 (1967).

    Google Scholar 

  9. M. R. Tubbs, Br. J. Appl. Phys. 15, 181 (1964).

    Article  Google Scholar 

  10. C. Arnoldussen Thomas, J. Electrochem. Sol.: Solid-State Sci. Technol. 123, 527 (1976).

    Google Scholar 

  11. G. M. Ramans, Structure and Morphology of Amorphous Films of Tungsten and Molybdenum Trioxides (Latv. Gos. Univ. im. P. Stuchki, Riga, 1987) [in Russian].

    Google Scholar 

  12. Maosong Tong and Guorui Dai, J. Mater. Sci. 36, 2535 (2001).

    Article  CAS  Google Scholar 

  13. V. N. Andreev and S. E. Nikitin, Fiz. Tverd. Tela (St. Petrsburg) 43(4), 755 (2001) [Phys. Solid State 43 (4), 788 (2001)].

    Google Scholar 

  14. M. Halmann, in Energy Resources through Photochemistry and Catalysis, Ed. by M. Gratzel (Academic, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  15. Yu. A. Gruzdkov, E. N. Savinov, and V. N. Parmon, in Photocatalytic Conversion of Solar Energy: Heterogeneous and Homogeneous Molecular Structurally Organized Systems (Nauka, Novosibirsk, 1991), p. 138 [in Russian].

    Google Scholar 

  16. M. A. Porai-Koshits and L. O. Atovmyan, Crystal Chemistry and Stereochemistry of Coordination Compounds of Molybdenum (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  17. J. N. Yao, Y. A. Yang, and B. H. Loo, J. Phys. Chem. B 102, 1856 (1998).

    Article  CAS  Google Scholar 

  18. I. B. Goncharov and U. F. Fialko, Zh. Fiz. Khim. 76(9), 1610 (2002) [Russ. J. Phys. Chem. 76 (9), 1454 (2002)].

    CAS  Google Scholar 

  19. Handbook of Thin Film Technology, Ed. by L. I. Maissel and R. Glang (McGraw-Hill, New York, 1970; Sovetskoe Radio, Moscow, 1977), Vol. 1.

    Google Scholar 

  20. N. V. Borisova, E. P. Surovoi, and I. V. Titov, Materialovedenie, No. 7, 16 (2006).

  21. E. P. Surovoy, N. V. Borisova, and I. V. Titov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 338 (2006).

  22. N. D. Tomashov, Theory of Corrosion and Protection of Metals (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  23. J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1971; Mir, Moscow, 1973).

    Google Scholar 

  24. M. M. Gurevich, Photometry (Energoatomizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  25. M. I. Epshtein, Measurements of Optical Radiation in Electronics (Energoatomizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  26. A. M. Brodskii and Yu. Ya. Gurevich, Theory of Electron Emission from Metals (Nauka, Moscow, 1973), p. 256 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Surovoi.

Additional information

Original Russian Text © E.P. Surovoi, N.V. Borisova, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 11, pp. 2120–2125.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surovoi, E.P., Borisova, N.V. Thermal transformations in nanosized MoO3 layers. Russ. J. Phys. Chem. 82, 1908–1912 (2008). https://doi.org/10.1134/S0036024408110198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024408110198

Keywords

Navigation