Skip to main content
Log in

The application of the radioactive tracer technique to study the kinetics of bromide isotope exchange reaction with the participation of strongly basic anion exchange resin indion FF-IP

  • Other Problems of Physical Chemistry
  • Published:
Russian Journal of Physical Chemistry A, Focus on Chemistry Aims and scope Submit manuscript

Abstract

In the present investigation, the 82Br radioactive isotope was used as a tracer to study the kinetics and mechanism of the exchange reaction between an ion exchange resin and an external solution of bromide ions. In an attempt to study the reversible bromide isotope exchange reaction kinetics, it was expected that whether the initial step was the exchange of radioactive bromide ions from the solution to the ion exchange resin (forward reaction) or from the ion exchange resin to the solution (reverse reaction), the two ion-isotope exchange reactions should occur simultaneously, which was further confirmed by the experimental values of specific reaction rates, 0.142 and 0.141 min−1, respectively. The results will be useful to standardize the process parameters so as to achieve optimum use of ion exchange resins in various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Atomic Energy Agency: Operation and Control of Ion Exchange Processes for Treatment of Radioactive Wastes, No. 78 of Technical Reports Series (IAEA, Vienna, 1967).

  2. International Atomic Energy Agency: Treatment of Low-and Intermediate-Level Liquid Radioactive Wastes, No. 236 of Technical Reports Series (IAEA, Vienna, 1984).

  3. C. V. King and S. Evans, J. Phys. Chem. 63, 1816 (1959).

    Article  CAS  Google Scholar 

  4. R. S. Lokhande, A.R. Kolte, and T.S. Prabhavalkar, Asian J. Chem. 11, 1026 (1999).

    CAS  Google Scholar 

  5. R. S. Lokhande and S. R. Tiwari, Asian J. Chem. 12, 97 (2000).

    CAS  Google Scholar 

  6. R. S. Lokhande and P. U. Singare, Asian J. Chem. 15, 33 (2003).

    CAS  Google Scholar 

  7. R. P. Bhatnagar, A. Bhardwaj, and S.D. Bhardwaj, Asian J. Chem. 10, 405, 409 (1998).

    CAS  Google Scholar 

  8. C. V. Bhat and J. Vardia, Asian J. Chem. 10, 834 (1998).

    CAS  Google Scholar 

  9. G. E. Boyd, L. S. Myers, and A. W. Adamson, J. Am. Chem. Soc. 69, 2849 (1947).

    Article  CAS  Google Scholar 

  10. G. E. Boyd, J. Schubert, and A. W. Adamson, J. Am. Chem. Soc. 69, 2818 (1947).

    Article  CAS  Google Scholar 

  11. R. S. Lokhande and P. U. Singare, Chem. Environ. Res. 7(1–2), 129; 7 (3–4), 283 (1998).

    CAS  Google Scholar 

  12. R. S. Lokhande and P. U. Singare, Asian J. Chem. 12, 214, 990, 999, 1003 (2000).

    CAS  Google Scholar 

  13. R. S. Lokhande and P. U. Singare, Asian J. Chem. 11, 758 (1999).

    CAS  Google Scholar 

  14. R. S. Lokhande and P. U. Singare, Res. J. Chem. Environ. 3(3), 25 (1999).

    CAS  Google Scholar 

  15. R. S. Lokhande and P. U. Singare, Asian J. Chem. 10, 898, 1026 (1998).

    CAS  Google Scholar 

  16. R. S. Lokhande and P. U. Singare, Orient. J. Chem. 14, 247, 303 (1998).

    CAS  Google Scholar 

  17. R. S. Lokhande and P. U. Singare, Asian J. Chem. 13, 8, 13, 20, 43, 50 (2001).

    CAS  Google Scholar 

  18. O. D. Bonner, G. Dickel, and H. Brummer, Z. Phys. Chem. (Frankfurt) 25, 81 (1960).

    CAS  Google Scholar 

  19. E. Ekedhal, E. Hogfeldt, and L. G. Sillen, Acta. Chem. Scand. 4, 556, 828, 829 (1950).

    Article  Google Scholar 

  20. F. Helfferich, Ion Exchange (McGraw-Hill, New York, 1962).

    Google Scholar 

  21. F. Helfferich, J. Phys. Chem. 66, 39 (1962).

    Article  CAS  Google Scholar 

  22. R. A. Blickenstaff, J. D. Wagner, and J. S. Dranoff, J. Phys. Chem. 71, 1670 (1967).

    Article  CAS  Google Scholar 

  23. Yu. P. Znamenskii, A.I. Kasperovich, and N. Y. Byekhon, Russ. J. Phys. Chem. 36, 1060 (1962).

    Google Scholar 

  24. J. Inczedy, in Analytical Applications of Ion Exchangers, Ed. by I. Buzas, 1st ed. (Pergamon, Oxford, 1966), p. 40.

    Google Scholar 

  25. E. A. Chuveleva, P. P. Nazarov, and K. V. Chmutov, Russ. J. Phys. Chem. 46, 1628 (1972).

    Google Scholar 

  26. B. A. Bolto, R. Mc. Neill, R. Siudak, et al., J. Macromol. Sci., Chem. 4, 1039 (1970).

    Article  CAS  Google Scholar 

  27. B.A. Bolto and R. E. Warner, Desalination 8, 21 (1970).

    Article  CAS  Google Scholar 

  28. Yu. P. Znamenskii, A.I. Kasperovich, and N.V. Bychkov, Russ. J. Phys. Chem. 42, 1586 (1968).

    Google Scholar 

  29. N. I. Gamayunov, Russ. J. Phys. Chem. 64, 1787 (1990).

    Google Scholar 

  30. R. S. Lokhande and M. N. Ingale, Asian J. Chem. 11, 1034 (1999).

    CAS  Google Scholar 

  31. G. E. Boyd, A. W. Adamson, and L. S. Myers, J. Am. Chem. Soc. 69, 2836 (1947).

    Article  CAS  Google Scholar 

  32. F. Helfferich and M. S. Plasset, J. Chem. Phys. 28, 418 (1958).

    Article  CAS  Google Scholar 

  33. Yu. P. Znamenskii, A. I. Kasperovich, and N. Y. Byekhov, Russ. J. Phys. Chem. 36, 1060 (1962).

    Google Scholar 

  34. D. D. Sood, in Proceedings of International Conference on Applications of Radioisotopes and Radiation in Industrial Development, Ed. by D. D. Sood, A. V. R. Reddy, S. R. K. Iyer, et al. (B.A.R.C., Mumbai, India, 1998), p. 47.

    Google Scholar 

  35. R. S. Lokhande and P. Karthikeyan, Asian J. Chem. 15, 532 (2003).

    CAS  Google Scholar 

  36. R. S. Lokhande, P. U. Singare and A. B. Patil, Radiochim. Acta 95(1), 111 (2007).

    Article  CAS  Google Scholar 

  37. R. S. Lokhande and P. U. Singare, Radiochim. Acta 95(3), 173 (2007).

    Article  CAS  Google Scholar 

  38. R. S. Lokhande, P. U. Singare, and A. R. Kolte, Radiochim. Acta 95(10), 595 (2007).

    Article  CAS  Google Scholar 

  39. R. S. Lokhande, P. U. Singare, and M. H. Dole, J. Nucl. Radiochem. Sci. 7(2), 29 (2006).

    CAS  Google Scholar 

  40. R. S. Lokhande, P. U. Singare, and P. Karthikeyan, Russian J. Phys. Chem. A 81(11), 1768 (2007).

    Article  CAS  Google Scholar 

  41. R. S. Lokhande, P. U. Singare, and M. H. Dole, Radiochemistry 49(5), 519, (2007).

    Article  CAS  Google Scholar 

  42. J. A. Kitchener, Methuen’s Monographs on Chemical Subjects: Ion-Exchange Resins (Methuen, London, 1961), p. 60.

    Google Scholar 

  43. G. Schulze, Z. Phys. Chem. 89, 168 (1951).

    Google Scholar 

  44. R. Kunin and R. J. Myers, J. Am. Chem. Soc. 69, 2874 (1947).

    Article  CAS  Google Scholar 

  45. D. Reichenberg, J. Am. Chem. Soc. 75, 589 (1953).

    Article  CAS  Google Scholar 

  46. A. W. Adamson and J. J. Grossman, J. Chem. Phys. 17, 1002 (1949).

    Article  CAS  Google Scholar 

  47. G. Dickel and A. Meyer, Z. Electrochem. 57, 901, (1953).

    Google Scholar 

  48. R. Schlogl and F. Helfferich, J. Chem. Phys. 26, 5 (1957).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Prabhavalkar.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lokhande, R.S., Singare, P.U. & Prabhavalkar, T.S. The application of the radioactive tracer technique to study the kinetics of bromide isotope exchange reaction with the participation of strongly basic anion exchange resin indion FF-IP. Russ. J. Phys. Chem. 82, 1589–1595 (2008). https://doi.org/10.1134/S0036024408090331

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024408090331

Keywords

Navigation