Skip to main content
Log in

A new approach to the determination of the stellate neuron activity function in rat’s brain

  • The International Conference “Modern Physical Chemistry for Advanced Materials”
  • Published:
Russian Journal of Physical Chemistry A, Focus on Chemistry Aims and scope Submit manuscript

Abstract

In this work, we present the results of a mathematical modelling of NO· release by neurons and its transport in the brain by diffusion. The model is applied to analyze the experimental data on NO· release from a neuron monitored during its patch-clamp stimulation by an ultramicroelectrode introduced into a slice of living rat’s brain. The neuron activity function was obtained by numerical deconvolution of the experimental data using the response function of the electrode to an instantaneous spike of neuronal activity. The Gaussian decomposition of NO· release activity function allows qualitative and quantitative conclusions to be drawn about neuron activity. Since the integral activity function is readily obtained by deconvolution, the decomposition can be performed using other more relevant descriptions of NO· bursts emerging from active neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Oleinick, C. Amatore, M. Guille, et al., Math. Med. Biol. 23, 27 (2006).

    Article  Google Scholar 

  2. A. Oleinick, C. Amatore, and I. Svir, Radioelektron. Inform. 3, 18 (2005).

    Google Scholar 

  3. A. Oleinick, C. Amatore, O. Klymenko, and I. Svir, Nonlinear Analysis: Modelling and Control 12(3), 399 (2007).

    CAS  Google Scholar 

  4. J. Sullivan. Nat. Neurosci. 6(9), 905 (2003).

    Article  CAS  Google Scholar 

  5. K.D. Micheva, J. Buchanan, R. W. Holz, and S. J. Smith, Nat. Neurosci. 6(9), 925 (2003).

    Article  CAS  Google Scholar 

  6. R. M. Wightman, C. Amatore, R. C. Engstrom, et al., Neuroscience 25(2), 513 (1988).

    Article  CAS  Google Scholar 

  7. C. Amatore, S. Arbault, Y. Chen, et al., Lab. Chip 7, 233 (2007).

    Article  CAS  Google Scholar 

  8. C. Amatore, S. Arbault, Y. Bouret, et al., Chem. Phys. Phys. Chem. 7, 181 (2006).

    CAS  Google Scholar 

  9. A. Rancillac, M. Guille, X.-K. Tong, et al., J. Neuroscience 26, 6997 (2006).

    Article  CAS  Google Scholar 

  10. V. L. Pogrebnaya, A. P. Usov, A. V. Nesterenko, and P. I. Bez’yazychnyi, Zh. Prikl. Khim. 48, 954 (1975).

    CAS  Google Scholar 

  11. A. Denicola, J. M. Souza, R. Radi, and E. Lissi. Arch. Biochem. Biophys. 328(1), 208 (1996).

    Article  CAS  Google Scholar 

  12. C. Amatore, A. Oleinick, and I. Svir. J. Electroanal. Chem. 553, 49 (2003).

    Article  CAS  Google Scholar 

  13. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  14. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1972).

    Google Scholar 

  15. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Svir.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klymenko, O., Oleinick, A., Amatore, C. et al. A new approach to the determination of the stellate neuron activity function in rat’s brain. Russ. J. Phys. Chem. 82, 1428–1433 (2008). https://doi.org/10.1134/S0036024408090021

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024408090021

Keywords

Navigation