Skip to main content
Log in

A study of magnetic liquids with the help of a paramagnetic sensor

  • Photochemistry and Magnetochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The paramagnetic sensor method was used to study local magnetic fields in a magnetite aqueous suspension. The sensor was 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl, a stable nitroxide radical. The lines in the EPR spectrum of the sensor were demonstrated to be broadened due to the dipole-dipole interaction with magnetite nanoparticles. It was established that no spin exchange occurred between sensor molecules and magnetite nanoparticles. The g-factor was found to decrease with the concentration of magnetite nanoparticles in the suspension. The mean strengths of the local magnetic fields calculated from changes in the EPR spectrum of the sensor proved to be substantially lower than the values determined from magnetic measurements. This difference was accounted for by the formation of linear aggregates of magnetite nanoparticles under the action of a magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Freed and G. K. Fraenkel, J. Chem. Phys. 39(2), 326 (1963).

    Article  CAS  Google Scholar 

  2. A. L. Buchachenko, Stable Radicals (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  3. A. L. Buchachenko and A. M. Vasserman, Stable Radicals: Electronic Structure, Reactivity, and Applications (Khimiya, Moscow, 1973) [in Russian].

    Google Scholar 

  4. A. N. Kuznetsov, Spin Probe Method (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  5. L. I. Antsiferova, A. M. Vasserman, V. A. Livshits, et al., Atlas of EPR Spectra for Spin Labels and Probes (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  6. Spin Labeling: Theory and Application, Ed. by L. J. Berliner (Academic, New York, 1976).

    Google Scholar 

  7. A. M. Vasserman and A. L. Kovarskii, Spin Probes and Labels in Physical Chemistry of Polymers (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  8. A. L. Kovarskii, in Spin Probes and Labels: A Quarter of a Century of Application to Polymer Studies, Ed. by R. A. Pethrick (Harwood, Switzerland, 1996), Vol. 13, p. 113.

    Google Scholar 

  9. J. H. Freed, in Modern Pulsed and Continuous Wave Electron Spin Resonance, Ed. by L. Kevan and M. K. Bowman (Wiley, New York, 1990), p. 119.

    Google Scholar 

  10. O. A. Anisimov, A. T. Nikitaev, K. I. Zamaraev, and Yu. N. Molin, Zh. Eksp. Teor. Fiz. 7(5), 682 (1971).

    CAS  Google Scholar 

  11. A. M. Vasserman, A. L. Kovarskii, L. L. Yasina, and A. L. Buchachenko, Teor. Eksp. Khim. 13(1), 30 (1977).

    CAS  Google Scholar 

  12. K. I. Zamaraev, Yu. N. Molin, and K. N. Salikhov, Spin Exchange: Theory and Physicochemical Applications (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  13. A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance with Application to Chemistry and Chemical Physics (Harper, New York, 1967; Mir, Moscow, 1970)].

    Google Scholar 

  14. K. A. Bernheim, T. H. Brown, A. S. Gutowsky, and D. E. Woessner, J. Chem. Phys. 30, 950 (1959).

    Article  CAS  Google Scholar 

  15. N. Bloembergen and L. O. Morgan, J. Chem. Phys. 34, 841 (1961).

    Article  Google Scholar 

  16. V. A. Livshits, B. B. Meshkov, A. L. Mikhailov, and M. V. Alfimov, Izv. Akad. Nauk, No. 12, 2049 (2002).

  17. V. A. Livshits, B. G. Dzikovski, and D. Marsh, J. Magn. Res. 148, 221 (2001).

    Article  CAS  Google Scholar 

  18. J. Eisinger, R. G. Shulman, and B. M. Szymanski, J. Chem. Phys. 36, 1721 (1962).

    Article  CAS  Google Scholar 

  19. A. Kowalsky and M. Cohn, Annu. Rev. Biochem. 33, 481 (1964).

    Article  CAS  Google Scholar 

  20. B. M. Berkovskii, V. F. Medvedev, and M. S. Krakov, Magnetic Liquids (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  21. A. A. Minakov, in Physical Encyclopedia (Sovetskaya Entsiklopediya, Moscow, 1990), Vol. 2, p.673 [in Russian].

    Google Scholar 

  22. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, Usp. Khim. 74(6), 539 (2005).

    Google Scholar 

  23. S. Taketomi and S. Chikazumi, Magnetic Fluids (Nikkan-Kogyo Sinbun, 1988; Mir, Moscow, 1989) [in Russian].

  24. P. C. Jordan, Mol. Phys. 38, 769 (1979).

    Article  CAS  Google Scholar 

  25. R. W. Chantrell, A. Bradbury, J. Popplewell, and S. W. Charles, J. Appl. Phys. 53, 2742 (1982).

    Article  CAS  Google Scholar 

  26. W. F. Brown, Micromagnetics (Interscience, New York, 1963, Nauka, Moscow, 1979).

    Google Scholar 

  27. M. I. Shliomis, Ups. Fiz. Nauk 112, 427 (1974).

    CAS  Google Scholar 

  28. K. I. Morozov, A. F. Pshenitchnikov, Yu. L. Raikher, and M. I. Shliomis, J. Magn. Magn. Mater. 65(2–3), 269 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.L. Kovarskii, O.N. Sorokina, V.N. Gorshenev, A.P. Tikhonov, 2007, published in Zhurnal Fizicheskoi Khimii, 2007, Vol. 81, No. 2, pp. 364–371.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovarskii, A.L., Sorokina, O.N., Gorshenev, V.N. et al. A study of magnetic liquids with the help of a paramagnetic sensor. Russ. J. Phys. Chem. 81, 301–307 (2007). https://doi.org/10.1134/S0036024407020264

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024407020264

Keywords

Navigation