Skip to main content
Log in

The thermodynamic characteristics of formation of vacancies in carbon subgroup element crystals

  • Phase Transitions and Thermodynamic Aspects of Structure of Substances
  • Published:
Russian Journal of Physical Chemistry Aims and scope Submit manuscript

Abstract

A method for calculating the parameters of formation of vacancies in crystals formed by spherically symmetrical atoms was developed. Both quantum effects at low temperatures and the possibility of the delocalization of atoms at high temperatures were studied. The parameters of formation of vacancies in carbon subgroup element crystals C-diam, Si, Ge, α-Sn, and Pb were calculated. The inclusion of the delocalization of atoms was shown to increase the enthalpy, entropy, and volume of vacancy formation. At low temperatures, the parameters of vacancy formation were found to depend strongly on the temperature, and the entropy of vacancy formation became negative. At high temperatures, close agreement with experimental data and theoretical estimates reported by other authors was obtained. The temperature dependence of vacancy parameters was studied for diamond heated isobarically from 100 to 4500 K. The applicability scope of the Arrhenius equation with a temperature-independent activation energy is discussed. The validity of the “compensation rule” (correlation between the entropy and enthalpy of vacancy formation) was demonstrated. It was also shown that the volume and entropy of vacancy formation were correlated over the whole temperature range studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Stishov, Pis’ma Zh. Eksp. Teor. Fiz. 71(1), 25 (2000) [JETP Lett. 71 (1), 15 (2000)].

    Google Scholar 

  2. M. N. Magomedov, Zh. Neorg. Khim. 49(12), 2057 (2004) [Russ. J. Inorg. Chem. 49 (12), 1906 (2004)].

    CAS  Google Scholar 

  3. B. F. Ormont, Introduction to Physical Chemistry and Crystal Chemistry of Semiconductors (Vysshaya Shkola, Moscow, 1968) [in Russian].

    Google Scholar 

  4. C. Kittel, Introduction Solid State Physics, 5th ed. (Wiley, New York, 1976; Nauka, Moscow, 1978).

    Google Scholar 

  5. P. A. Varotsos and K. D. Alexopoulos, Thermodynamics of Point Defects and Their Relation with Bulk Properties (North-Nolland, Amsterdam, 1986).

    Google Scholar 

  6. A. N. Orlov and Yu. V. Trushin, Energy of Point Defects in Metals (Energoatomizdat, Moscow, 1983) [in Russian].

    Google Scholar 

  7. L. A. Girifalco, Statistical Physics of Materials (Wiley, New York, 1973; Mir, Moscow, 1975).

    Google Scholar 

  8. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed., Ed. by M. Abramowitz and I. A. Stegun (U.S. Dept. of Commerce, Washington, 1972; Nauka, Moscow, 1979).

    Google Scholar 

  9. M. N. Magomedov, Teplofiz. Vys. Temp. 27(2), 279 (1989).

    CAS  Google Scholar 

  10. M. N. Magomedov, Teplofiz. Vys. Temp. 39(4), 559 (2001) [High Temp. 39 (4), 518 (2001)].

    Google Scholar 

  11. M. N. Magomedov, Metally, No. 6, 27 (2001).

  12. M. N. Magomedov, Rasplavy 17(5), 66 (2003).

    Google Scholar 

  13. R. P. Feynman, Statistical Mechanics: A Set of Lectures (Benjamin, Mass., 1972; Mir, Moscow, 1978).

    Google Scholar 

  14. M. N. Magomedov, Rasplavy 3(2), 67 (1989).

    Google Scholar 

  15. M. N. Magomedov, Rasplavy 6(2), 49 (1992).

    Google Scholar 

  16. M. N. Magomedov, Zh. Fiz. Khim. 67(4), 669 (1993).

    CAS  Google Scholar 

  17. S. I. Novikova, Thermal Expansion of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  18. M. N. Magomedov, Metallofizika 13(5), 106 (1991).

    Google Scholar 

  19. I. V. Aleksandrov, A. F. Goncharov, A. N. Zisman, and S. M. Stishov, Zh. Eksp. Teor. Fiz. 93(8), 680 (1987).

    CAS  Google Scholar 

  20. M. N. Magomedov, Zh. Fiz. Khim. 76(5), 785 (2002) [Russ. J. Phys. Chem. 76 (5), 687 (2002).

    CAS  Google Scholar 

  21. M. N. Magomedov, Zh. Fiz. Khim. 62(8), 2103 (1988).

    CAS  Google Scholar 

  22. Shu Zhen and G. J. Davies, Phys. Status Solidi A 78(2), 595 (1983).

    CAS  Google Scholar 

  23. V. E. Zinov’ev, Thermal Properteis of Metals at High Temperatures: A Handbook (Metallurgiya, Moscow, 1989) [in Russian].

    Google Scholar 

  24. Physical Properties of Diamond: A Handbook, Ed. by N. V. Novikov (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  25. H. J. McSkimin and P. Andreatch, J. Appl. Phys. 43(7), 2944 (1972).

    Article  CAS  Google Scholar 

  26. L. A. Shul’man, Sverkhtverd. Mater., No. 4, 58 (1993).

  27. N. F. Uvarov, E. F. Hairetdinov, and W. Bollmann, Cryst. Res. Technol. 24(5), 543 (1989).

    Google Scholar 

  28. D. Sh. Tsagareishvilli, Methods for Calculating Thermal and Elastic Properties of Crystalline Inorganic Substances (Metsniereba, Tbilisi, 1977) [in Russian].

    Google Scholar 

  29. S. V. Stankus, R. A. Khairulin, and P. V. Tyagel’skii, Teplofiz. Vys. Temp. 37(4), 559 (1999) [High Temp. 37 (4), 529 (1999)].

    Google Scholar 

  30. V. N. Chebotin, Physical Chemistry of Solid State (Khimiya, Moscow, 1982) [in Russian].

    Google Scholar 

  31. U. Krause, J. P. Kuska, and R. Wedell, Phys. Status Solidi B 151(2), 479 (1989).

    Google Scholar 

  32. Y. Taji, J. Phys. Soc. Jpn. 48(4), 1237 (1980).

    Article  CAS  Google Scholar 

  33. P. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys. 61(2), 289 (1989).

    Article  CAS  Google Scholar 

  34. E. T. Turkdogan, Physical Chemistry of High Temperature Technology (Academic, New York, 1980; Metallurgiya, Moscow, 1985) [in Russian].

    Google Scholar 

  35. P. Varotsos and K. Alexopoulos, Phys. Rev. B: Condens. Mater 15(8), 4111 (1977).

    CAS  Google Scholar 

  36. K. T. Koga, M. J. Walter, N. Eizo, and K. Katsura, Phys. Revi. B: Condens. Matter 72(2), 024108 (1–4) (2005).

    Google Scholar 

  37. P. Varotsos and K. Alexopoulos, J. Phys. C: Solid State Phys. 12(19), L761 (1979).

    Article  CAS  Google Scholar 

  38. I. Iwasa, J. Phys. Soc. Jpn. 56(5), 1635 (1987).

    Article  CAS  Google Scholar 

  39. V. A. Kisilishin, Dokl. Akad. Nauk SSSR 295(1), 127 (1987).

    CAS  Google Scholar 

  40. P. Mialhe, J. Phys. D: Appl. Phys. 22(5), 720 (1989).

    Article  Google Scholar 

  41. A. Yelon and B. Movaghar, Phys. Rev. Lett. 65(5), 618 (1990).

    Article  Google Scholar 

  42. M. N. Magomedov, Teplofiz. Vys. Temp. 40(1), 152 (2002) [High Temp. 40 (1), 142 (2002)].

    Google Scholar 

  43. M. N. Magomedov, Zh. Fiz. Khim. 76(1), 139 (2002) [Russ. J. Phys. Chem. 76 (1), 123 (2002)].

    CAS  Google Scholar 

  44. M. N. Magomedov, Pis’ma Zh. Tekh. Fiz. 28(10), 64 (2002) [Tech. Phys. Lett. 28 (5), 430 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magomedov, M.N. The thermodynamic characteristics of formation of vacancies in carbon subgroup element crystals. Russ. J. Phys. Chem. 80 (Suppl 1), S140–S151 (2006). https://doi.org/10.1134/S0036024406130243

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024406130243

Keywords

Navigation