Skip to main content
Log in

Study on the Structure and Transport Properties of Molten Salts of NaF–KF–AlF3 Electrolytes by First-Principles Molecular Dynamics Simulation

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The NaF–KF–AlF3 is a promising low-temperature electrolyte for industrial application. Herein, we used a molecular dynamics and first-principles calculations to simulate NaF–KF–AlF3 molten salts with molar ratios(n(NaF + KF)/AlF3) of 1.3–1.6 and 30 mol % NaF at 1123 K. The results of the study reveal the law of influence of molar ratio on the structural properties and transport properties of the NaF–KF–AlF3 system. The results show that the average coordination number of the NaF–KF–AlF3 system was about 4.8, and the ionic structure was mainly [AlF4] and [AlF5]2–, with strong covalent interactions between Al-F ions. As the molar ratio increased five-coordinated [AlF5]2– gradually became the dominant population in the molten salts, and the proportion of bridging fluoride ions increased, promoting ionic polymerization in the molten salts and the formation of complex ionic groups. The order of ion diffusion ability in the molten salts followed the order of K+ > Na+ > F > Al3+, when the molar ratio was 1.3 and 1.4, changing to Na+ > K+ > F > Al3+, when the molar ratio was 1.5 and 1.6. The viscosities and ionic conductivities of the molten salts were in the range of 1.1–1.65 mPa s, and 0.85–1.15 S/cm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. B. Gao, S. Wang, A. Ji, X. Hu, Z. Shi, and Z. Wang, J. Chem. Eng. Data 55, 5214 (2010). https://doi.org/10.1021/je100741b

    Article  CAS  Google Scholar 

  2. H. Lu, X. Hu, B. Cao, L. Ma, W. Chai, and Y. Yang, Chemom. Intell. Lab. Syst. 196, 103885 (2020). https://doi.org/10.1016/j.chemolab.2019.103885

    Article  CAS  Google Scholar 

  3. W. Li, G. Zhang, J. Li, and Y. Lai, JOM 61, 39 (2009). https://doi.org/10.1007/s11837-009-0068-9

    Article  CAS  Google Scholar 

  4. Y.-w. Zhou, J.-m. Zhou, S.-h. Chen, Z.-m. Liu, and S.-z. Bao, J. Cent. South Univ. 25, 482 (2018). https://doi.org/10.1007/s11771-018-3752-5

    Article  CAS  Google Scholar 

  5. A. Redkin, A. Apisarov, A. Dedyukhin, V. Kovrov, Y. Zaikov, O. Tkacheva, and J. Hryn, ECS Meeting Abstracts MA2012-02, 2012, p. 3628. https://doi.org/10.1149/MA2012-02/53/3628

  6. H. Yan, L. Huang, W. Ma, Z. Liu, and B. Qin. Metall. Mater. Trans. B 52, 3490 (2021). https://doi.org/10.1007/s11663-021-02277-5

    Article  CAS  Google Scholar 

  7. H. Yan, Z. Liu, W. Ma, L. Huang, C. Wang, and Y. Liu, JOM 72, 247 (2020). https://doi.org/10.1007/s11837-019-03909-7

    Article  CAS  Google Scholar 

  8. B. Chen, J. Peng, Y. Wang, and Y. Di, Metall. Mater. Trans. B 51, 1181 (2020). https://doi.org/10.1007/s11663-020-01800-4

    Article  CAS  Google Scholar 

  9. H. Yan, J. Yang, and W. Li, J. Chem. Eng. Data 56, 4147 (2011). https://doi.org/10.1021/je2005825

    Article  CAS  Google Scholar 

  10. D. A. Rozhentsev, S. V. Pershina, S. A. Petrova, and N. K. Tkachev, Russ. J. Gen. Chem. 93, 886 (2023). https://doi.org/10.1134/S1070363223040151

    Article  CAS  Google Scholar 

  11. V. P. Vorob’eva, A. E. Zelenaya, V. I. Lutsyk, and M. V. Lamueva, Russ. J. Inorg. Chem. 68, 1622 (2023). https://doi.org/10.1134/s0036023623602039

    Article  CAS  Google Scholar 

  12. P. N. D’yachkov, and N. A. Lomakin, Russ. J. Inorg. Chem. 68, 424 (2023). https://doi.org/10.1134/S0036023622602823

    Article  Google Scholar 

  13. J. Wang, C. Chen, H. Zhang, and J. Li, Metals 13, (2023). https://doi.org/10.3390/met13091521

  14. B. Li, Z. R. Jones, C. Eiroa-Lledo, K. E. Knope, V. Mocko, B. W. Stein, J. N. Wacker, S. A. Kozimor, E. R. Batista, and P. Yang, Inorg. Chem. 62, 10528 (2023). https://doi.org/10.1021/acs.inorgchem.2c03982

    Article  CAS  PubMed  Google Scholar 

  15. A. A. Finogenov, I. K. Garkushin, and E. I. Frolov, Glass Phys. Chem. 48, 630 (2022). https://doi.org/10.1134/S1087659622700031

    Article  CAS  Google Scholar 

  16. H. Guo, J. Li, H. Zhang, J. Luo, J. Wang, C. Mou, S. Wu, and C. Zong, J. Fluorine Chem. 235, 109546 (2020). https://doi.org/10.1016/j.jfluchem.2020.109546

    Article  CAS  Google Scholar 

  17. J. Híveš, and J. Thonstad. Electrochim. Acta 49, 5111 (2004). https://doi.org/10.1016/j.electacta.2004.06.022

    Article  CAS  Google Scholar 

  18. J. Li, H. Guo, H. Zhang, R. Cai Li, Q. Wang, J. Wang, and T. Li, TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings, 2019, p. 1357. https://doi.org/10.1007/978-3-030-05861-6_129

  19. X. Lv, Z. Han, C. Guan, L. Jiang, and S. Wu, Phys. Chem. Chem. Phys. 21, 16573 (2019). https://doi.org/10.1039/C9CP02811K

    Article  CAS  PubMed  Google Scholar 

  20. X. Lv, Z. Han, H. Zhang, Q. Liu, J. Chen, and L. Jiang, Phys. Chem. Chem. Phys. 21, 7474 (2019). https://doi.org/10.1039/C9CP00377K

    Article  CAS  PubMed  Google Scholar 

  21. L. Zhang, X. Chen, H. Yan, and Z. Liu, Russ. J. Phys. Chem. A. 97, 1558 (2023). https://doi.org/10.1134/S0036024423070142

    Article  CAS  Google Scholar 

  22. A. Leahy. AM MATH MON 125, 267 (2018). https://doi.org/10.1080/00029890.2018.1413857

    Article  Google Scholar 

  23. A. Bengtson, H. O. Nam, S. Saha, R. Sakidja, and D. Morgan, Int. J. Comput. Mater. Sci. Surf. Eng. 83, 362 (2014). doi.org/https://doi.org/10.1016/j.commatsci.2013.10.043

    Article  CAS  Google Scholar 

  24. F. J. Spera, M. S. Ghiorso, and D. Nevins, Geochim. Cosmochim. Acta. 75, 1272 (2011). https://doi.org/10.1016/j.gca.2010.12.004

    Article  CAS  Google Scholar 

  25. N. Tsuji, T. Shitara, and M. Ueda, Physical Review E. 97, 012101 (2018). https://doi.org/10.1103/PhysRevE.97.012101

    Article  CAS  PubMed  Google Scholar 

  26. G. Han, X. Liu, J. Huang, K. Nawnit, and L. Sun, Phys. Fluids. 32, (2020). https://doi.org/10.1063/1.5139501

  27. C.-M. Tchen, J. Appl. Phys. 25, 463 (1954). https://doi.org/10.1063/1.1721663

    Article  CAS  Google Scholar 

Download references

Funding

The financial support from NSFC 52064030, Yunnan Major Scientific and Technological Projects (grants nos. 202202AG05001, 202202AG050007), Yunnan industrial talent project YNQR-CYRC-2018-013 are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Qibo Liu, Laixin Zhang, Hengwei Yan; Methodology: Qibo Liu, Hengwei Yan, Zhanwei Liu, Xiumin Chen; Formal analysis and investigation: Hengwei Yan, Zhanwei Liu; Writing-original draft preparation: Qibo Liu, Laixin Zhang; Writing-review and editing: Qibo Liu; Resource: Hengwei Yan, Zhanwei Liu, Xiumin Chen.

Corresponding author

Correspondence to Hengwei Yan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qibo Liu, Zhang, L., Yan, H. et al. Study on the Structure and Transport Properties of Molten Salts of NaF–KF–AlF3 Electrolytes by First-Principles Molecular Dynamics Simulation. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S0036023624600163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023624600163

Keywords:

Navigation