Skip to main content
Log in

Size-Focusing Synthetic Process and Properties of [Au25Cu8(S-Adam)19(PPh3)5]+ Nanocluster

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Compared with nanoparticles, nanoclusters have some unique properties, such as definite structure, surface effect, and quantum size effect. In this work, AuCu nanocluster protected by triphenylphosphine and adamantane mercaptan is synthesized and it is formulated to [Au25Cu8(S-Adam)19(PPh3)5]+. With the characterization of UV-Vis absorption spectrum and Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF), the synthesis of [Au25Cu8(S-Adam)19(PPh3)5]+ nanocluster is demonstrated to be a size-focusing process: polydisperse AumCun(S-Adam)x(PPh3)y precursor with a size ranging from 900 Da to 2000 Da generates firstly and it transforms into [Au25Cu8(S-Adam)19(PPh3)5]+ nanocluster in 3 days. TEM image demonstrates it is monodisperse distributing between 0.84 and 2.0 nm with an average size of 1.4 nm. TG shows a weight loss of 38.70% with ligands continuously breaking down between 200 and 330°C. Thermal stability test shows that it keeps well thermal stability at 40°C: the peaks of UV-Vis absorption spectrum gradually get weaken at 6 h and completely become a decaying curve at 8 h. This work provides a simple method to prepare AuCu nanocluster and affords new ideas for preparing Au-based alloy nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Z. Wang, X. Pan, S. Qian, G. Yang, F. Du, and X. Yuan, Coord. Chem. Rev. 438, 213900 (2021). https://doi.org/10.1016/j.ccr.2021.213900

    Article  CAS  Google Scholar 

  2. X. Yuan, L. L. Chng, J. Yang, and J. Y. Ying, Adv. Mater. 32, 1906063 (2020). https://doi.org/10.1002/adma.201906063

    Article  CAS  Google Scholar 

  3. I. V. Mironov and V. Y. Kharlamova, Russ. J. Inorg. Chem. 68, 1487 (2023). https://doi.org/10.1134/s003602362360185x

    Article  CAS  Google Scholar 

  4. C. Zeng, M. Zhou, C. Gayathri, R. R. Gil, M. Y. Sfeir, and R. Jin, Chin. J. Chem. Phys. 31, 555 (2018). https://doi.org/10.1063/1674-0068/31/cjcp1806141

    Article  CAS  Google Scholar 

  5. H. Yu, B. Rao, W. Jiang, S. Yang, and M. Zhu, Coord. Chem. Rev. 378, 595 (2019). https://doi.org/10.1016/j.ccr.2017.12.005

    Article  CAS  Google Scholar 

  6. X. Q. Ren, X. M. Fu, X. Z. Lin, C. Liu, J. H. Huang, and J. H. Yan, Chem. Res. Chinese U. 34, 719 (2018). https://doi.org/10.1007/s40242-018-8027-z

    Article  CAS  Google Scholar 

  7. M. Rambukwella, L. Chang, A. Ravishanker, A. Fortunelli, M. Stener, and A. Dass, Phys. Chem. Chem. Phys. 20, 13255 (2018). https://doi.org/10.1039/c8cp01564c

    Article  CAS  PubMed  Google Scholar 

  8. A. Fortunelli, L. Sementa, V. D. Thanthirige, T. C. Jones, M. Stener, K. J. Gagnon, A. Dass, and G. Ramakrishna, J. Phys. Chem. Lett. 8, 457 (2017). https://doi.org/10.1021/acs.jpclett.6b02810

    Article  CAS  PubMed  Google Scholar 

  9. X. Yuan, X. Dou, K. Zheng, and J. Xie, J. Part. Part. Syst. Char. 32, 613 (2015). https://doi.org/10.1002/ppsc.201400212

    Article  Google Scholar 

  10. Y. Li, T. Higaki, X. Du, and R. Jin, Adv. Mater. 32, 1905488 (2020). https://doi.org/10.1002/adma.201905488

    Article  CAS  Google Scholar 

  11. C. Zeng, and R. Jin, Chem.—Asian J. 12, 1839 (2017). https://doi.org/10.1002/asia.201700023

    Article  CAS  PubMed  Google Scholar 

  12. S. Malola, and H. Hakkinen, J. Am. Chem. Soc. 141, 6006 (2019). https://doi.org/10.1021/jacs.9b01204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Li, R. J. Mosqueda, Y. Song, Y. Zhang, J. Chai, G. Mpourmpakis, and R. Jin, Nanoscale 12, 9423 (2020). https://doi.org/10.1039/d0nr01430c

    Article  CAS  PubMed  Google Scholar 

  14. Z. Shahin, H. Ji, R. Chiriac, N. Essayem, F. Rataboul, and A. Demessence, Beilstein J. Nanotech. 10, 228 (2019). https://doi.org/10.3762/bjnano.10.21

    Article  CAS  Google Scholar 

  15. S. Pollitt, V. Truttmann, T. Haunold, C. Garcia, W. Olszewski, J. Llorca, N. Barrabes, and G. Rupprechter, ACS Catal. 10, 6144 (2020). https://doi.org/10.1021/acscatal.0c01621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Garcia, S. Pollitt, M. Linden, V. Truttmann, C. Rameshan, R. Rameshan, E. Pittenauer, G. Allmaier, P. Kregsamer, M. Stoeger-Pollach, N. Barrabes, and G. Rupprechter, Catal. Today 336, 174 (2019). https://doi.org/10.1016/j.cattod.2018.12.013

    Article  CAS  Google Scholar 

  17. X. Zan, Q. Li, Y. Pan, D. J. Morris, P. Zhang, P. Li, H. Yu, and M. Zhu, ACS Appl. Nano Mater. 1, 6773 (2018). https://doi.org/10.1021/acsanm.8b01559

    Article  CAS  Google Scholar 

  18. L. Zhang, and E. Wang, Nano Today 9, 132 (2014). https://doi.org/10.1016/j.nantod.2014.02.010

    Article  CAS  Google Scholar 

  19. L. Shang, J. Xu, and G. U. Nienhaus, Nano Today 28, 132 (2019). https://doi.org/10.1016/j.nantod.2019.100767

    Article  Google Scholar 

  20. A. Sannigrahi, S. Chowdhury, I. Nandi, D. Sanyal, S. Chall, and K. Chattopadhyay, Nanoscale Adv. 1, 3660 (2019). https://doi.org/10.1039/c9na00459a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Y. Tang, J. Xu, C. Xiong, Y. Xiao, X. Zhang, and S. Wang, Analyst 144, 2643 (2019). https://doi.org/10.1039/c9an00032a

    Article  CAS  PubMed  Google Scholar 

  22. M. Agrachev, W. Fei, S. Antonello, S. Bonacchi, T. Dainese, A. Zoleo, M. Ruzzi, and F. Maran, Chem. Sci. 11, 3427 (2020). https://doi.org/10.1039/d0sc00520g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. R. R. Nasaruddin, M. J. Hulsey, and J. P. Xie, Mol. Catal. 518, 112095 (2022). https://doi.org/10.1016/j.mcat.2021.112095

    Article  CAS  Google Scholar 

  24. G. Panapitiya, H. Wang, Y. Chen, E. Hussain, R. Jin, and J. P. Lewis, Phys. Chem. Chem. Phys. 20, 13747 (2018). https://doi.org/10.1039/c7cp07295c

    Article  CAS  PubMed  Google Scholar 

  25. X. Lin, W. Ma, K. Sun, B. Sun, X. Fu, X. Ren, C. Liu, and J. Huang, J. Phys. Chem. Lett. 12, 552 (2021). https://doi.org/10.1021/acs.jpclett.0c03416

    Article  CAS  PubMed  Google Scholar 

  26. G. Li, and R. Jin, Catal. Today 278, 187 (2016). https://doi.org/10.1016/j.cattod.2015.11.019

    Article  CAS  Google Scholar 

  27. J. Chai, S. Yang, Y. Lv, H. Chong, H. Yu, and M. Zhu, Angew. Chem. Int. Ed. 58, 15671 (2019). https://doi.org/10.1002/anie.201907609

    Article  CAS  Google Scholar 

  28. C. Liu, X. Ren, F. Lin, X. Fu, X. Lin, T. Li, K. Sun, and J. Huang, Angew. Chem. Int. Ed. 58, 11335 (2019). https://doi.org/10.1002/anie.201904612

    Article  CAS  Google Scholar 

  29. Y. Li, T.-Y. Luo, M. Zhou, Y. Song, N. L. Rosi, and R. Jin, J. Am. Chem. Soc. 140, 14235 (2018). https://doi.org/10.1021/jacs.8b08335

    Article  CAS  PubMed  Google Scholar 

  30. R. Jin, S. Zhao, C. Liu, M. Zhou, G. Panapitiya, Y. Xing, N. L. Rosi, J. P. Lewis, and R. Jin, Nanoscale 9, 19183 (2017). https://doi.org/10.1039/c7nr05871c

    Article  CAS  PubMed  Google Scholar 

  31. B. Zhang, G. Salassa, and T. Burgi, Chem. Commun. 52, 9205 (2016). https://doi.org/10.1039/c6cc04469g

    Article  CAS  Google Scholar 

  32. C. Kumara, K. J. Gagnon, and A. Dass, J. Phys. Chem. Lett. 6, 1223 (2015). https://doi.org/10.1021/acs.jpclett.5b00270

    Article  CAS  PubMed  Google Scholar 

  33. Munoz-Castro, Chem. Commun. 55, 7307 (2019). https://doi.org/10.1039/c9cc02970b

    Article  CAS  Google Scholar 

  34. M. Kim, Q. Tang, A. V. N. Kumar, K. Kwak, W. Choi, D.-e. Jiang, and D. Lee, J. Phys. Chem. Lett. 9, 982 (2018). https://doi.org/10.1021/acs.jpclett.7b03261

    Article  CAS  PubMed  Google Scholar 

  35. Y. Negishi, K. Igarashi, K. Munakata, W. Ohgake, and K. Nobusada, Chem. Commun. 48, 660 (2012). https://doi.org/10.1039/c1cc15765e

    Article  CAS  Google Scholar 

  36. L. V. Nair, S. Hossain, S. Takagi, Y. Imai, G. Hu, S. Wakayama, B. Kumar, W. Kurashige, D.-e. Jiang, and Y. Negishi, Nanoscale 10, 18969 (2018). https://doi.org/10.1039/c8nr04078h

    Article  CAS  PubMed  Google Scholar 

  37. Y. Negishi, W. Kurashige, Y. Niihori, T. Iwasa, and K. Nobusada, Phys. Chem. Chem. Phys. 12, 6219 (2010). https://doi.org/10.1039/b927175a

    Article  CAS  PubMed  Google Scholar 

  38. K. Kwak, W. Choi, Q. Tang, M. Kim, Y. Lee, D.-e. Jiang, and D. Lee, Nat. Commun. 8, 14723 (2017). https://doi.org/10.1038/ncomms14723

    Article  PubMed  PubMed Central  Google Scholar 

  39. S. L. Christensen, M. A. MacDonald, A. Chatt, P. Zhang, H. Qian, and R. Jin, J. Phys. Chem. C 116, 26932 (2012). https://doi.org/10.1021/jp310183x

    Article  CAS  Google Scholar 

  40. P. P. Fedorov, and S. N. Volkov, Russ. J. Inorg. Chem. 61, 772 (2016). https://doi.org/10.1134/s0036023616060061

    Article  CAS  Google Scholar 

  41. B. Rao, T. Zhao, S. Yang, J. Chai, Y. Pan, S. Weng, H. Yu, X. Li, and M. Zhu, Dalton Trans. 47, 475 (2018). https://doi.org/10.1039/c7dt02959d

    Article  CAS  PubMed  Google Scholar 

  42. J. Chai, Y. Lv, S. Yang, Y. Song, X. Zan, Q. Li, H. Yu, M. Wu, and M. Zhu, J. Phys. Chem. C 121, 21665 (2017). https://doi.org/10.1021/acs.jpcc.7b05074

    Article  CAS  Google Scholar 

  43. A. N. Kuznetsov, E. A. Stroganova, and E. Y. Zakharova, Russ. J. Inorg. Chem. 64, 1625 (2019). https://doi.org/10.1134/s0036023619130059

    Article  CAS  Google Scholar 

  44. S. Yamazoe, W. Kurashige, K. Nobusada, Y. Negishi, and T. Tsukuda, J. Phys. Chem. C 118, 25284 (2014). https://doi.org/10.1021/jp5085372

    Article  CAS  Google Scholar 

  45. Q. Li, K. J. Lambright, M. G. Taylor, K. Kirschbaum, T. Y. Luo, J. Zhao, G. Mpourmpakis, S. Mokashi-Punekar, N. L. Rosi, and R. Jin, J. Am. Chem. Soc. 139, 17779 (2017). https://doi.org/10.1021/jacs.7b11491

    Article  CAS  PubMed  Google Scholar 

  46. S. Wang, Y. Song, S. Jin, X. Liu, J. Zhang, Y. Pei, X. Meng, M. Chen, P. Li, and M. Zhu, J. Am. Chem. Soc. 137, 4018 (2015). https://doi.org/10.1021/ja511635g

    Article  CAS  PubMed  Google Scholar 

  47. M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, J. Am. Chem. Soc. 130, 5883 (2008). https://doi.org/10.1021/ja801173r

    Article  CAS  PubMed  Google Scholar 

  48. Y. Shichibu, Y. Negishi, H. Tsunoyama, M. Kanehara, T. Teranishi, and T. Tsukuda, Small 3, 835 (2007). https://doi.org/10.1002/smll.200600611

    Article  CAS  PubMed  Google Scholar 

  49. Z. Wu, E. Lanni, W. Chen, M. E. Bier, D. Ly, and R. Jin, J. Am. Chem. Soc. 131, 16672 (2009). https://doi.org/10.1021/ja907627f

    Article  CAS  PubMed  Google Scholar 

  50. R. Jin, H. Qian, Z. Wu, Y. Zhu, M. Zhu, A. Mohanty, and N. Garg, J. Phys. Chem. Lett. 1, 2903 (2010). https://doi.org/10.1021/jz100944k

    Article  CAS  Google Scholar 

  51. Y. Negishi, K. Nobusada, and T. Tsukuda, J. Am. Chem. Soc. 127, 5261 (2005). https://doi.org/10.1021/ja042218h

    Article  CAS  PubMed  Google Scholar 

  52. N. K. Chaki, Y. Negishi, H. Tsunoyama, Y. Shichibu, and T. Tsukuda, J. Am. Chem. Soc. 130, 8608 (2008). https://doi.org/10.1021/ja8005379

    Article  CAS  PubMed  Google Scholar 

  53. D. Lee, R. Donkers, G. L. Wang, A. S. Harper, and R. W. Murray, J. Am. Chem. Soc. 126, 6193 (2004). https://doi.org/10.1021/ja049605b

    Article  CAS  PubMed  Google Scholar 

  54. W. Du, S. Jin, L. Xiong, M. Chen, J. Zhang, X. Zou, Y. Pei, S. Wang, and M. Zhu, J. Am. Chem. Soc. 139, 1618 (2017). https://doi.org/10.1021/jacs.6b11681

    Article  CAS  PubMed  Google Scholar 

  55. X. Ma, Y. Bai, Y. Song, Q. Li, Y. Lv, H. Zhang, H. Yu, and M. Zhu, Angew. Chem. Int. Ed. 59, 17234 (2020). https://doi.org/10.1002/anie.202006447

    Article  CAS  Google Scholar 

  56. S. Thota, Y. Wang, and J. Zhao, Mater. Chem. Front. 2, 1074 (2018). https://doi.org/10.1039/C7QM00538E

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the Doctoral Start-up Foundation of Liaoning Province, China (2022-BS-264) and Scientific Research Fund of Liaoning Provincial Education Department, China (JYTQN2023107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Xuemei.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supporting information includes UV-Vis absorption spectra of compounds (Figs. S1, S2).

11502_2024_3211_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu Xuemei, Zuoyi, X., Qianyu, Y. et al. Size-Focusing Synthetic Process and Properties of [Au25Cu8(S-Adam)19(PPh3)5]+ Nanocluster. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S0036023623603148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023623603148

Keywords:

Navigation