Skip to main content
Log in

Binding Studies of Novel Manganese Complexes to DNA

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new Mn(II) complex was designed and synthesized in hydrothermal conditions using phenylmalonic acid and phosphine as raw materials. The effective characterization method was single-crystal X-ray diffraction. Besides, the interaction with FS-DNA (fish sperm DNA) and the DNA binding constants of the complex were determined by UV spectroscopy. The results showed that it was a significant apoptotic effect on cancer cells; therefore, the synthesized Mn(II) complex is important for the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. L. Siegel, K. D. Miller, and A. Jemal, CA-Cancer J. Clin. 70, 30 (2020). https://doi.org/10.3322/caac.21590

    Article  Google Scholar 

  2. J. Wang, G. C. Xu, Y. P. Zhang, H. Y. Luo, J. Y. Li, L. Zhang, and D. Z. Jia, New. J. Chem. 43, 2529 (2019). https://doi.org/10.1039/c8nj02695e

    Article  CAS  Google Scholar 

  3. L. L. Sun, Y. H. Li, and H. Shi, J. Clust. Sci. 30, 251 (2018). https://doi.org/10.1123/kr.2018-0019

    Article  Google Scholar 

  4. L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, T. J. Lortet, and A. Jemal, CA-Cancer J. Clin. 65, 87 (2015). https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  5. B. W. Stewart, C. P. Wild, World Cancer Rep. 21, 53 (2014). https://doi.org/S1387-7003(21)00501-3/h0025

  6. G. Backman-Blanco, H. Valdes, M. T. Ramirez-Apan, P. Cano-Sanchez, S. Hernandez-Ortega, A. L. Orjuela, J. Ali-Torres, A. Flores-Gaspar, R. Reyes-Martinez, and D. Morales-Morales, J. Inorg. Biochem. 211, 111 (2020). https://doi.org/10.1016/j.jinorgbio.2020.111206

    Article  CAS  Google Scholar 

  7. J. Reedijk, J. Inorg. Chim. Acta 198, 873 (1992). https://doi.org/10.1016/S0020-1693(00)92433-2

    Article  Google Scholar 

  8. J. Reedijk, J. Pure Appl. Chem. 59, 181 (1987). https://doi.org/10.1351/pac198759020181

    Article  CAS  Google Scholar 

  9. E. J. Gao, M. C. Zhu, L. Liu, Y. Huang, L. Wang, C. Y. Shi, W. Z. Zhang, and Y. G. Sun, Inorg. Chem. 49, 3261 (2010). https://doi.org/10.1021/ic902176e

    Article  CAS  PubMed  Google Scholar 

  10. E. A. Hillard and G. Jaouen, Organometallics 30, 20 (2011). https://doi.org/10.1021/om100964h

    Article  CAS  Google Scholar 

  11. E. J. Gao, M. C. Zhu, H. X. Yin, L. Liu, Q. Wu, and Y. G. Sun, J. Inorg. Biochem. 102, 1958 (2008). https://doi.org/10.1016/j.jinorgbio.2008.07.011

    Article  CAS  PubMed  Google Scholar 

  12. N. Ioannidis, G. Schansker, V. V. Barynin, and V. Petrouleas, J. Biol. Inorg. Chem. 5, 354 (2000). https://doi.org/10.1007/PL00010664

    Article  CAS  PubMed  Google Scholar 

  13. T. Iiyama, M. Chikira, and T. Oyoshi, J. Biol. Inorg. Chem. 8, 135 (2003). https://doi.org/10.1007/s00775-002-0398-3

    Article  CAS  PubMed  Google Scholar 

  14. G. Bononi, D. Iacopini, G. Cicio, S. Di Pietro, C. Granchi, V. Di Bussolo, and F. Minutolo, Chem. Med. Chem. 16, 30 (2021). https://doi.org/10.1002/cmdc.202000456

    Article  CAS  PubMed  Google Scholar 

  15. G. C. Liu, S. Y. Wu, W. Liu, G. X. Gao, Y. Zhang, E. J. Gao, and M. C. Zhu, Appl. Organomet. Chem. 6427, 1 (2021). https://doi.org/10.1002/aoc.6427

    Article  CAS  Google Scholar 

  16. V. Arion, J. J. Brunet, and D. Neibecker, Inorg. Chem. 40, 2628 (2001). https://doi.org/10.1021/ic0006899

    Article  CAS  PubMed  Google Scholar 

  17. G. M. Sheldrick, Acta Cryst. A 64, 112 (2008). https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  18. G. M. Sheldrick and T. R. Schneider, Methods Enzymol. 277, 319 (1997). https://doi.org/10.1016/S0076-6879(97)77018-6

    Article  CAS  PubMed  Google Scholar 

  19. E. J. Gao, K. H. Wang, X. F. Gu, Y. Yu, Y. G. Sun, and W. Z. Zhang, Inorg. Biochem. 101, 1404 (2007). https://doi.org/10.1016/j.jinorgbio.2007.06.007

    Article  CAS  Google Scholar 

  20. A. A. Franich, M. D. Zivkovic, D. Cocic, B. Petrovic, M. Milovanovic, A. Arsenijevic, J. Milovanovic, D. Arsenijevic, B. Stojanovic, M. I. Djuran, and S. Rajkovic, J. Biol. Inorg. Chem. 24, 1009 (2019). https://doi.org/10.1016/j.jinorgbio.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  21. P. N. Wang, C. W. Yeh, C. H. Tsou, Y. W. Ho, S. C. Lin, and M. C. Suen, New J. Chem. 38, 1079 (2014). https://doi.org/10.1039/C3NJ01322G

    Article  CAS  Google Scholar 

  22. S. Mallick, P. Sanpui, S. S. Ghosh, and A. Chattopadhyay, and A. Paul, RSC Adv. 5, 12268 (2015). https://doi.org/10.1039/C4RA12770F

  23. J. Vančo, Z. Šindelář, Z. Dvořák, and Z. Trávníček, J. Inorg. Biochem. 142, 92 (2015). https://doi.org/10.1016/j.jinorgbio.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  24. D. S. Tereshchenko, M. E. Buzoverov, and T. Y. Glazunova, Russ. J. Inorg. Chem. 68, 1282 (2023). https://doi.org/10.1134/S0036023623601666

    Article  CAS  Google Scholar 

  25. N. S. Rukk, N. S. Kabernik, and G. A. Buzanov, Russ. J. Inorg. Chem. 67, 1184 (2022). https://doi.org/10.1134/S0036023622080228

    Article  CAS  Google Scholar 

  26. M. C. Zhu, J. X. Liu, J.Q. Su, B. Meng, Y. H. Feng, B. Jia, T. T. Peng, Z. Z. Qi, and E. J. Gao, Appl. Organomet. Chem. 26, 4676 (2018). https://doi.org/10.1002/aoc.4676

    Article  CAS  Google Scholar 

  27. M. Baskin, N. Fridman, M. Kosa, and G. Kosa, Dalton Trans. 46, 15330 (2017). https://doi.org/10.1039/C7DT03387G

    Article  CAS  PubMed  Google Scholar 

  28. K.H. Wang, M. C. Zhu, D. L. Bai, J. Wang, Y. Liu, G. Xin, T. C. Li, D. Y. Hou, and E. J. Gao, J. Struct. Chem. 56, 191 (2015). https://doi.org/10.1134/S002247661501028X

    Article  CAS  Google Scholar 

  29. Q. Wang, Z. Y. Yang, G. F. Qi, and D. D. Qin, Eur. J. Med. Chem. 44, 2425 (2009). https://doi.org/10.1016/j.ejmech.2008.10.023

    Article  CAS  PubMed  Google Scholar 

  30. S. Lu, H. Wang, Y. B. Sheng, M. Y. Liu, and P. Chen, J. Control. Release 160, 33 (2012). https://doi.org/10.1016/j.jconrel.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  31. E. J. Gao, Z. Z. Qi, Y. Qu, Y. Q. Ding, Y. Zhan, N. Sun, S. Z. Zhang, X. Qiu, and M.C. Zhu, Eur. J. Med. Chem. 136, 235 (2017). https://doi.org/10.1016/j.ejmech.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  32. M. Dehkhodaei, M. Sahihi, H. Amiri Rudbari, and F. Momenbeik. J. Biol. Inorg. Chem. 23, 181 (2018). https://doi.org/10.1007/s00775-017-1505-9

    Article  CAS  PubMed  Google Scholar 

  33. J. H. Shi, Y. Y. Lou, K. L. Zhou, and D. Q. Pan. J. Biomol. Struct. Dyn. 36, 2738 (2018). https://doi.org/10.1080/07391102.2017.1365012

    Article  CAS  PubMed  Google Scholar 

  34. A. Strand, L. Vahasalo, A. Ketola, K. Salminen, E. Retulainen, and A. Sundberg, Cellulose 25, 3781 (2018). https://doi.org/10.1007/s10570-018-1832-1

    Article  CAS  Google Scholar 

  35. J. L. Qin, W. Y. Shen, Z. F. Chen, L. F. Zhao, Q. P. Qin, Y. C. Yu, and H. Liang, Sci. Rep. 7, 46 (2017). https://doi.org/10.1038/srep46056

    Article  Google Scholar 

  36. S. Mukherjee, I. Mitra, B. V. P. Reddy, C. Fouzder, S. Mukherjee, S. Ghosh, U. Chatterji, and S. C. Moi, J. Mol. Liq. 247, 126 (2017). https://doi.org/10.1016/j.molliq.2017.09.104

    Article  CAS  Google Scholar 

  37. D. Wan, B. Tang, Y. J. Wang, B. H. Guo, H. Yin, Q. Y. Yi, and Y. J. Liu, Eur. J. Med. Chem. 139, 180 (2017). https://doi.org/10.1016/j.ejmech.2017.07.066

    Article  CAS  PubMed  Google Scholar 

  38. B. Tang, D. Wan, Y. J. Wang, Q. Y. Yi, B. H. Guo, and Y. J. Liu, Eur. J. Med. Chem. 145, 302 (2018). https://doi.org/10.1016/j.ejmech.2017.12.087

    Article  CAS  PubMed  Google Scholar 

  39. W. Dong, C. F. Xiu, and C.Y. Liu, Russ. J. Inorg. Chem. 67, 1973 (2022). https://doi.org/10.1134/S0036023622100618

    Article  CAS  Google Scholar 

  40. P. Ghorai, R. Saha, S. Bhuiya, S. Das, P. Brandao, D. Ghosh, T. Bhaumik, P. Bandyopadhyay, D. Chattopadhyay, and A. Saha, Polyhedron 141, 153 (2018). https://doi.org/10.1016/j.poly.2017.11.041

    Article  CAS  Google Scholar 

  41. M. Sunita, M. Padmaja, B. Anupama, and C. Gyana Kumari, J. Fluoresc. 22, 1003 (2012). https://doi.org/10.1007/s10895-012-1038-0

    Article  CAS  PubMed  Google Scholar 

  42. E. J. Gao, L. Liu, C. Y. Shi, H. X. Yin, M. C. Zhu, Q. Wu, and Q. T. Liu, Chin. J. Chem. 27, 6 (2009). https://doi.org/10.1002/cjoc.200990177

    Article  Google Scholar 

Download references

Funding

The work was supported financially by the Natural Science Foundation of China (Nos. U1608224 and 21171118), the Distinguished Professor Project of Liaoning province, Liao Ning Revitalization Talents Program (XLYC1907047), Liaoning Science and Technology Project Management (grant No. 2019-BS-192), and the Basic Research Project of Educational Department of Liaoning Province (LQ2020005, LQ2020004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Gao.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Ma, X.Y., Yao, W. et al. Binding Studies of Novel Manganese Complexes to DNA. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S0036023623603033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023623603033

Keywords:

Navigation