Skip to main content
Log in

Synthesis and Magnetic Resonance of Lanthanum Manganites Doped with Potassium Ions

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Manganites doped with potassium ions La1 – xKxMnO3, where х = 0.0, 0.1, and 0.15, have been obtained by extraction-pyrolytic method at low temperature. The compounds have been studied by X-ray powder diffraction, electronic paramagnetic and ferromagnetic resonances. Unit cell parameters of La1 – xKxMnO3 samples have been calculated. According to magnetic resonance spectroscopy, La1 – xKxMnO3 exhibits phase delamination into paramagnetic and ferromagnetic phases. The fraction of the latter phase increases when temperature decreases. The temperature of transition from paramagnetic into ferromagnetic phase (Curie temperature, TC) for La1 – xKxMnO3 is –17.4, –13.7, and –4.8°С at х = 0.0, 0.1, and 0.15, respectively. The reason of symbate change in TC and potassium ion concentration in La1 – xKxMnO3 is supposed to be the change in the content of ferromagnetic pairs Mn3+–О2––Mn4+ in the manganites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. X. Guan, H. Li, Sh. Jin, et al., Ceram. Int. 47, 18931 (2021). https://doi.org/10.1016/j.ceramint.2021.03.235

    Article  CAS  Google Scholar 

  2. N. D. Sharma, S. Sharma, N. Choudhary, et al., Ceram. Int. 45, 13637 (2019). https://doi.org/10.1016/j.ceramint.2019.04.004

    Article  CAS  Google Scholar 

  3. N. Hur, S. Park, P. A. Shama, et al., Nature 429, 392 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. C. Shivakumara and M. B. Bellakki, Bull. Mater. Sci. 32, 443 (2009).

    Article  CAS  Google Scholar 

  5. M. W. Shaikh and D. Varshney, Mater. Chem. Phys. 134, 886 (2012).

    Article  CAS  Google Scholar 

  6. L. E. Gonchar, Phys. Solid State 61, 728 (2019). https://doi.org/10.1134/S1063783419050093

    Article  CAS  Google Scholar 

  7. D. I. Pchelina, V. D. Sedykh, N. I. Chistyakova, et al., J. Phys. Chem. Solids 159, 110268 (2021). https://doi.org/10.26201/ISSP.2020/FKS-2.330

    Article  CAS  Google Scholar 

  8. V. Markovich, G. Jung, I. Fita, et al., J. Phys. D: Appl. Phys. 41, 185001 (2008). https://doi.org/10.1088/0022-3727/41/18/185001

    Article  CAS  Google Scholar 

  9. C. Zener, Phys. Rev. 82, 403 (1951). https://doi.org/10.1103/PhysRev.82.403

    Article  CAS  Google Scholar 

  10. J. M. D. Coey, M. Viret, and S. Molnár, Adv. Phys. 48, 167 (1999). https://doi.org/10.1080/000187399243455

    Article  CAS  Google Scholar 

  11. R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969). https://doi.org/10.1103/PhysRevLett.23.17

    Article  Google Scholar 

  12. Y. Ying, T. W. Eom, N. V. Dai, et al., J. Magn. Magn. Mater. 323, 94 (2011). https://doi.org/10.1016/j.jmmm.2010.08.036

    Article  CAS  Google Scholar 

  13. J. Deisenhofer, D. Braak, and K. H.-A. von Nidda, et al., Phys. Rev. Lett. 95, 257202 (2005). https://doi.org/10.1103/PhysRevLett.95.257202

    Article  CAS  PubMed  Google Scholar 

  14. R. M. Eremina, J. V. Yatsyk, Ya. M. Mukovskii, et al., JETP Lett. 85, 51 (2007). https://doi.org/10.1134/S0021364007010109

    Article  CAS  Google Scholar 

  15. F. N. Bukhan’ko and A. F. Bukhan’ko, Phys. Solid State 64, 802 (2022). https://doi.org/10.21883/PSS.2022.07.54584.304

    Article  Google Scholar 

  16. G. S. Patrin, Y. G. Shiyan, S. A. Yarikov, et al., Phys. Solid State 62, 1350 (2020). https://doi.org/10.1134/S1063783420080272

    Article  Google Scholar 

  17. Yu. M. Nikolaenko, N. B. Efros, D. O. Fedyuk, et al., Phys. Solid State 64, 798 (2022). https://doi.org/10.21883/PSS.2022.07.54583.236

    Article  Google Scholar 

  18. A. A. Povzner, A. G. Volkov, E. I. Lopatko, et al., Phys. Solid State 65, 531 (2023). https://doi.org/10.21883/PSS.2023.04.55991.528

    Article  Google Scholar 

  19. A. V. Fedorova, N. V. Chezhina, E. A. Ponomareva, et al., Russ. J. Gen. Chem. 93, 64 (2023). https://doi.org/10.31857/S0044460X23010158

    Article  CAS  Google Scholar 

  20. A. V. Fedorova, N. V. Chezhina, and V. V. Shilovskikh, Russ. J. Gen. Chem. 93, 68 (2023). https://doi.org/10.1134/S1070363223010103

    Article  CAS  Google Scholar 

  21. Ya. Mittova, N. S. Perov, E. V. Tomina, et al., Inorg. Mater. 57, 1340 (2021). https://doi.org/10.1134/S0020168521130033

    Article  CAS  Google Scholar 

  22. N. I. Steblevskaya, M. A. Medkov, and S. B. Yarusova, Preparation and Properties of Functional Materials Based on Rare Earth and Rare Metal Oxides (VGUES, Vladivostok, 2021).

    Google Scholar 

  23. N. I. Steblevskaya, M. V. Belobeletskaya, I. A. Tka-chenko, et al., Russ. J. Inorg. Chem. 61, 880 (2016). https://doi.org/10.1134/S0036023616070196

    Article  CAS  Google Scholar 

  24. N. I. Steblevskaya, Theor. Found. Chem. Eng. 56, 905 (2022). https://doi.org/10.1134/S0040579522050165

    Article  Google Scholar 

  25. I. K. Kamilov, A. G. Gamzatov, A. B. Batdalov, et al., Phys. Solid State 52, 735 (2010).

    Article  Google Scholar 

  26. Yu. G. Chukalkin and A. E. Teplykh, Phys. Solid State 48, 2310 (2006).

    Article  CAS  Google Scholar 

  27. Yu. A. Izyumov and Yu. N. Skryabin, Usp. Fiz. Nauk 172, 121 (2001).

    Article  Google Scholar 

  28. B. Dabrovski, K. Rogacki, X. Xiong, et al., Phys. Rev. 70, 5716 (1988).

    Google Scholar 

  29. V. P. S. Awana, E. Schimit, E. Gmelin, et al., J. Appl. Phys. 87, 5034 (2000).

    Article  CAS  Google Scholar 

  30. N. Guskos, G. Zolnierkiewicz, A. Guskos, et al., Nanotechnology in the Security Systems. NATO Science for Peace and Security Series C: Environmental Security (Springer, Dordrecht, 2015). https://doi.org/10.1007/978-94-017-9005-5_4

    Book  Google Scholar 

  31. V. Castel, J. B. Youssef, and C. Brosseau, J. Nanomater. 2007, 27437 (2007). https://doi.org/10.1155/2007/27437

    Article  CAS  Google Scholar 

  32. S. A. Bouzid, A. C. Galca, M. Sajieddine, et al., J. Alloys Compd. 839, 155546 (2020).

    Article  CAS  Google Scholar 

  33. S. Das and T. K. Dey, J. Alloys Compd. 440, 30 (2007). https://doi.org/10.1016/j.jallcom.2006.09.051

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed under the State Assignments for the Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences (projects nos. FWFN (0205)-2022-0001 and FWFN (0205)-2022-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Steblevskaya.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steblevskaya, N.I., Ziatdinov, A.M., Belobeletskaya, M.V. et al. Synthesis and Magnetic Resonance of Lanthanum Manganites Doped with Potassium Ions. Russ. J. Inorg. Chem. 68, 1737–1743 (2023). https://doi.org/10.1134/S0036023623602210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602210

Keywords:

Navigation