Skip to main content
Log in

Epoxide-Mediated Synthesis of Two-Component Al2O3–TiO2 Aerogels and Their UV-Protective Characteristics

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new method was proposed to synthesize aerogels based on Al2O3–TiO2 by the hydrolysis of mixed solutions of titanium tetrachloride and aluminum nitrate in the presence of propylene oxide, followed by supercritical drying of the obtained gels. The aerogels are characterized by a high specific surface area (140–500 m2/g) and a high specific porosity (1.7–2.7 cm3/g). Heat treatment of the Al2O3–TiO2 aerogels at temperatures up to 600°C does not lead to crystallization of titanium dioxide, whereas the formation of crystalline anatase in aerogels based on individual TiO2 is observed already at a temperature of 450°C. Using the standardized ISO 24443-2016 method, the SPF value of the obtained materials was determined, which turned out to be comparable to the characteristics of a commercial inorganic UV filter based on TiO2 (Kronos 1171). At the same time, the photocatalytic activity of the Al2O3–TiO2 aerogels turned out to be more than 120 times lower than the similar characteristics of the commercial UV filter based on titanium dioxide. The results obtained demonstrated that the Al2O3–TiO2 aerogels are promising as components of sunscreens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S.-G. Jin, F. Padron, and G. P. Pfeifer, ACS Omega 7, 32936 (2022). https://doi.org/10.1021/acsomega.2c04424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. K. C. Guerra, N. Zafar, and J. S. Crane, Skin Cancer Prevention (Treasure Island, StatPearls Publishing, 2023). https://pubmed.ncbi.nlm.nih.gov/30137812/.

  3. G. J. Nohynek and H. Schaefer, Regul. Toxicol. Pharmacol. 33, 285 (2001). https://doi.org/10.1006/rtph.2001.1476

    Article  CAS  PubMed  Google Scholar 

  4. H. Gonzalez, N. Tarras-Wahlberg, B. Stromdahl, et al., BMC Dermatol. 7, 1 (2007). https://doi.org/10.1186/1471-5945-7-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. B. Gabard Sunscreens, Cosmetics (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-642-59869-2_9

    Book  Google Scholar 

  6. A. M. Bryden, H. Moseley, S. H. Ibbotson, et al., Br. J. Dermatol. 155, 737 (2006). https://doi.org/10.1111/j.1365-2133.2006.07458.x

    Article  CAS  PubMed  Google Scholar 

  7. F. C. Victor, D. E. Cohen, and N. A. Soter, J. Am. Acad. Dermatol. 62, 605 (2010). https://doi.org/10.1016/j.jaad.2009.06.084

    Article  CAS  PubMed  Google Scholar 

  8. S. L. Schneider and H. W. Lim, Photodermatol. Photoimmunol. Photomed. 35, 442 (2019). https://doi.org/10.1111/phpp.12439

    Article  CAS  PubMed  Google Scholar 

  9. N. Serpone, D. Dondi, and A. Albini, Inorg. Chim. Acta 360, 794 (2007). https://doi.org/10.1016/j.ica.2005.12.057

    Article  CAS  Google Scholar 

  10. M. Morsella, N. D' Alessandro, A. E. Lanterna, et al., ACS Omega 1, 464 (2016). https://doi.org/10.1021/acsomega.6b00177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. K. Nakata and A. Fujishima, J. Photochem. Photobiol. C Photochem. Rev. 13, 169 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  12. M. Horie, S. Sugino, H. Kato, et al., Toxicol. Mech. Methods 26, 284 (2016). https://doi.org/10.1080/15376516.2016.1175530

    Article  CAS  PubMed  Google Scholar 

  13. S. Sun, P. Song, J. Cui, et al., Catal. Sci. Technol. 9, 4198 (2019). https://doi.org/10.1039/C9CY01020C

    Article  CAS  Google Scholar 

  14. E. Jang, K. Sridharan, Y. M. Park, et al., Chem. A Eur. J. 22, 12022 (2016). https://doi.org/10.1002/chem.201600815

    Article  CAS  Google Scholar 

  15. L. C. Becker, I. Boyer, W. F. Bergfeld, et al., Int. J. Toxicol. 35, 16 (2016). https://doi.org/10.1177/1091581816677948

    Article  CAS  Google Scholar 

  16. G. Cassin, S. Diridollou, F. Flament, et al., Int. J. Cosmet. Sci. 40, 58 (2018). https://doi.org/10.1111/ics.12433

    Article  CAS  PubMed  Google Scholar 

  17. K. E. Yorov, I. V. Kolesnik, I. P. Romanova, et al., J. Supercrit. Fluids 169, 105099 (2021). https://doi.org/10.1016/j.supflu.2020.105099

    Article  CAS  Google Scholar 

  18. A. C. Pierre and G. M. Pajonk, Chem. Rev. 102, 4243 (2002). https://doi.org/10.1021/cr0101306

    Article  CAS  PubMed  Google Scholar 

  19. N. Hüsing and U. Schubert, Angew. Chem. Int. Ed. 37, 22 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980202)3-7:1/2<22::AID-ANIE22>3.0.CO;2-I

    Article  Google Scholar 

  20. A. Feinle, M. S. Elsaesser, and N. Hüsing, Chem. Soc. Rev. 45, 3377 (2016). https://doi.org/10.1039/C5CS00710K

    Article  CAS  PubMed  Google Scholar 

  21. K. E. Yorov, A. E. Baranchikov, M. A. Kiskin, et al., Russ. J. Coord. Chem. 48, 89 (2022). https://doi.org/10.1134/S1070328422020014

    Article  CAS  Google Scholar 

  22. P. Singh and A. Nanda, Int. J. Cosmet. Sci. 36, 273 (2014). https://doi.org/10.1111/ics.12124

    Article  CAS  PubMed  Google Scholar 

  23. L. Chen, J. Zhu, Y.-M. Liu, et al., J. Mol. Catal. A Chem. 255, 260 (2006). https://doi.org/10.1016/j.molcata.2006.04.043

    Article  CAS  Google Scholar 

  24. R. Moussaoui, K. Elghniji, M. ben Mosbah, et al., J. Saudi Chem. Soc. 21, 751 (2017). https://doi.org/10.1016/j.jscs.2017.04.001

    Article  CAS  Google Scholar 

  25. J. Donėlienė, E. Fataraitė-Urbonienė, N. Danchova, et al., Gels 8, 422 (2022). https://doi.org/10.3390/gels8070422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. B. Gawel, K. Gawel, and G. Øye, Materials 3, 2815 (2010). .https://doi.org/10.3390/ma3042815

    Article  CAS  PubMed Central  Google Scholar 

  27. S. A. Lermontov, E. A. Straumal, A. A. Mazilkin, et al., Mater. Lett. 215, 19 (2017). https://doi.org/10.1016/j.matlet.2017.12.031

    Article  CAS  Google Scholar 

  28. K. E. Yorov, N. A. Sipyagina, A. N. Malkova, et al., Inorg. Mater. 52, 163 (2016). https://doi.org/10.1134/S0020168516020035

    Article  CAS  Google Scholar 

  29. K. E. Yorov, N. A. Sipyagina, A. E. Baranchikov, et al., Russ. J. Inorg. Chem. 61, 1339 (2016). https://doi.org/10.1134/S0036023616110048

    Article  CAS  Google Scholar 

  30. A. E. Baranchikov, G. P. Kopitsa, K. E. Yorov, et al., Russ. J. Inorg. Chem. 66, 874 (2021). https://doi.org/10.1134/S003602362106005X

    Article  CAS  Google Scholar 

  31. J. Livage, M. Henry, and C. Sanchez, Prog. Solid State Chem. 18, 259 (1988). https://doi.org/10.1016/0079-6786(88)90005-2

    Article  CAS  Google Scholar 

  32. A. E. Gash, T. M. Tillotson, Jr., J. H. Satcher, et al., J. Non. Cryst. Solids 285, 22 (2001). https://doi.org/10.1016/S0022-3093(01)00427-6

    Article  CAS  Google Scholar 

  33. H. Itoh, T. Tabata, M. Kokitsu, et al., J. Ceram. Soc. Jpn. 101 (1177), 1081 (1993). https://doi.org/10.2109/jcersj.101.1081

    Article  CAS  Google Scholar 

  34. T.-Y. Wei, C.-H. Chen, K.-H. Chang, et al., Chem. Mater. 21, 3228 (2009). https://doi.org/10.1021/cm9007365

    Article  CAS  Google Scholar 

  35. T. F. Baumann, A. E. Gash, S. C. Chinn, et al., Chem. Mater. 17, 395 (2005). https://doi.org/10.1021/cm048800m

    Article  CAS  Google Scholar 

  36. S. A. Lermontov, A. N. Malkova, N. A. Sipyagina, et al., J. Sol-Gel Sci. Technol. 84, 377 (2017). https://doi.org/10.1007/s10971-017-4429-5

  37. S. A. Lermontov, L. L. Yurkova, E. A. Straumal, et al., Russ. J. Inorg. Chem. 63, 303 (2018). https://doi.org/10.1134/S0036023618030142

    Article  CAS  Google Scholar 

  38. K. E. Yorov, A. D. Yapryntsev, A. E. Baranchikov, et al., J. Sol-Gel Sci. Technol. 86, 400 (2018). https://doi.org/10.1007/s10971-018-4647-5

    Article  CAS  Google Scholar 

  39. S. V. Kameneva, K. E. Yorov, R. K. Kamilov, et al., J. Sol-Gel Sci. Technol. 107, 586 (2023). https://doi.org/10.1007/s10971-023-06149-z

    Article  CAS  Google Scholar 

  40. J. Rouquerol, P. Llewellyn, and F. Rouquerol, Stud. Surf. Sci. Catal. 160, 49 (2007). https://doi.org/10.1016/S0167-2991(07)80008-5

    Article  CAS  Google Scholar 

  41. Yu. Ya. Fialkov, Solvent as a Means of Controlling a Chemical Process (Khimiya, Moscow, 1990) [in Russian].

    Google Scholar 

  42. E. N. Kuzin and N. E. Krutchinina, Inorg. Mater. 55, 834 (2019). https://doi.org/10.1134/S0020168519080065

    Article  CAS  Google Scholar 

  43. T.-H. Wang, A. M. Navarrete-López, S. Li, et al., J. Phys. Chem. A 114, 7561 (2010). https://doi.org/10.1021/jp102020h

    Article  CAS  PubMed  Google Scholar 

  44. J. Archambault and R. Rivest, Can. J. Chem. 36, 1461 (1958). https://doi.org/10.1139/v58-216

    Article  CAS  Google Scholar 

  45. T. Cottineau, M. Richard-Plouet, A. Rouet, et al., Chem. Mater. 20, 1421 (2008). https://doi.org/10.1021/cm702531q

    Article  CAS  Google Scholar 

  46. H.-H. Emons, E. Janneck, and K. Pollmer, Z. Anorg. Allg. Chem. 511, 135 (1984). https://doi.org/10.1002/zaac.19845110415

    Article  CAS  Google Scholar 

  47. H. Suzuki and S.-I. Ishiguro, Acta Crystallogr. Sect. C 54, 586 (1998). https://doi.org/10.1107/S0108270197018817

    Article  Google Scholar 

  48. Titanium(IV), Zirconium, Hafnium and Thorium, in Hydrolysis of Metal Ions, Ed. by P. L. Brown and C. Ekberg (Wiley, Weinheim, 2016). https://doi.org/10.1002/9783527656189.ch10

    Book  Google Scholar 

  49. Aluminium, Gallium, Indium and Thallium, in Hydrolysis of Metal Ions, Ed. by P. L. Brown and C. Ekberg (Wiley, Weinheim, 2016). https://doi.org/10.1002/9783527656189.ch13

    Book  Google Scholar 

  50. A. E. Gash, T. M. Tillotson, J. H. Satcher, et al., Chem. Mater. 13, 999 (2001). https://doi.org/10.1021/cm0007611

    Article  CAS  Google Scholar 

  51. X. Du, Y. Wang, X. Su, et al., Powder Technol. 192, 40 (2009). https://doi.org/10.1016/j.powtec.2008.11.008

    Article  CAS  Google Scholar 

  52. M. Thommes, K. Kaneko, A. V. Neimark, et al., Pure Appl. Chem. 87, 1051 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  53. M. Gao, B. Liu, P. Zhao, et al., J. Sol-Gel Sci. Technol. 91, 514 (2019). https://doi.org/10.1007/s10971-019-05057-5

    Article  CAS  Google Scholar 

  54. A. Guinier and G. Fournet, Small-Angle X-ray Scattering (John Wiley & Sons Inc., New York, 1955). https://doi.org/10.1002/pol.1956.120199326

    Book  Google Scholar 

  55. J. Teixeira, in On Growth and Form (Springer, Dordrecht, 1986). https://doi.org/10.1007/978-94-009-5165-5_9

    Book  Google Scholar 

  56. D. Kim, J. Jung, and J. Ihm, Nanomaterials 8, 375 (2018). https://doi.org/10.3390/nano8060375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. S. Keysar, Y. De Hazan, Y. Cohen, et al., J. Mater. Res. 12, 430 (1997). https://doi.org/10.1557/JMR.1997.0063

    Article  CAS  Google Scholar 

  58. F. Meng, J. R. Schlup, and L. T. Fan, Chem. Mater. 9, 2459 (1997). https://doi.org/10.1021/cm9700662

    Article  CAS  Google Scholar 

  59. J.-Y. Chane-Ching and L. C. Klein, J. Am. Ceram. Soc. 71, 86 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05765.x

    Article  CAS  Google Scholar 

  60. M. Catauro and E. Tranquillo, G. Dal Poggetto, et al., Materials 11, 2367 (2018). https://doi.org/10.3390/ma11122364

  61. M. Diko, Acta Geodyn. Geomater. 149 (2015). https://doi.org/10.13168/AGG.2015.0052

  62. G. Feng, F. Jiang, W. Jiang, et al., Ceram. Int. 45, 18704 (2019). https://doi.org/10.1016/j.ceramint.2019.06.096

    Article  CAS  Google Scholar 

  63. S. A. Kirillova, V. I. Almjashev, and V. V. Gusarov, Russ. J. Inorg. Chem. 56, 1464 (2011). https://doi.org/10.1134/S0036023611090117

    Article  CAS  Google Scholar 

  64. G. P. Dransfield, Radiat. Prot. Dosimetry 91, 271 (2000). https://doi.org/10.1093/oxfordjournals.rpd.a033216

    Article  CAS  Google Scholar 

  65. M. G. Kim, J. M. Kang, J. E. Lee, et al., ACS Omega 6, 10668 (2021). https://doi.org/10.1021/acsomega.1c00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. H. Nishizawa and Y. Aoki, J. Solid State Chem. 56, 158 (1985). https://doi.org/10.1016/0022-4596(85)90052-0

    Article  CAS  Google Scholar 

  67. A. K. Bachina, O. V. Almjasheva, V. I. Popkov, et al., J. Cryst. Growth 576, 126371 (2021). https://doi.org/10.1016/j.jcrysgro.2021.126371

    Article  CAS  Google Scholar 

  68. O. V. Almjasheva, N. A. Lomanova, V. I. Popkov, et al., Nanosyst. Physics, Chem. Mat. 10, 428 (2019). https://doi.org/10.17586/2220-8054-2019-10-4-428-437

    Article  CAS  Google Scholar 

  69. H. Lin, L. Li, M. Zhao, et al., J. Am. Chem. Soc. 134, 8328 (2012). https://doi.org/10.1021/ja3014049

    Article  CAS  PubMed  Google Scholar 

  70. B. Hammouda, J. Appl. Crystallogr. 43, 716 (2010). https://doi.org/10.1107/S0021889810015773

    Article  CAS  Google Scholar 

  71. P. W. Schmidt, D. Avnir, D. Levy, et al., J. Chem. Phys. 94, 1474 (1991). https://doi.org/10.1063/1.460006

    Article  CAS  Google Scholar 

  72. V. Pogorelov, I. Doroshenko, G. Pitsevich, et al., J. Mol. Liq. 235, 7 (2017). https://doi.org/10.1016/j.molliq.2016.12.037

    Article  CAS  Google Scholar 

  73. J. M. Roscoe and J. P. D. Abbatt, J. Phys. Chem. A 109, 9028 (2005). https://doi.org/10.1021/jp050766r

    Article  CAS  PubMed  Google Scholar 

  74. K. Thomas, P. E. Hoggan, L. Mariey, et al., Catal. Lett. 46, 77 (1997). https://doi.org/10.1023/A:1019017123596

    Article  CAS  Google Scholar 

  75. D. A. H. Hanaor and C. C. Sorrell, J. Mater. Sci. 46, 855 (2011). https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  76. ArierU. O. Akkaya and F. Z. Tepehan, Composites Part B 58, 147 (2014). https://doi.org/10.1016/j.compositesb.2013.10.023

    Article  CAS  Google Scholar 

  77. F. Hanini, A. Bouabellou, Y. Bouachiba, et al., IOSR J. Eng. 3, 21 (2013). https://doi.org/10.9790/3021-031112128

    Article  Google Scholar 

  78. S. Riaz, Sajid-ur-Rehman, M. Abutalib, et al., J. Electron. Mater. 45, 5185 (2016). https://doi.org/10.1007/s11664-016-4754-4

    Article  CAS  Google Scholar 

  79. E. O. Filatova and A. S. Konashuk, J. Phys. Chem. C 119, 20755 (2015). https://doi.org/10.1021/acs.jpcc.5b06843

    Article  CAS  Google Scholar 

  80. M. P. Prange, X. Zhang, E. S. Ilton, et al., J. Chem. Phys. 149, 024502 (2018). https://doi.org/10.1063/1.5037104

    Article  CAS  PubMed  Google Scholar 

  81. F. Tzompantzi, Y. Piña, A. Mantilla, et al., Catal. Today 220–222, 49 (2014). https://doi.org/10.1016/j.cattod.2013.10.027

    Article  CAS  Google Scholar 

  82. O. Carp, C. L. Huisman, and A. Reller, Prog. Solid State Chem. 32, 33 (2004).https://doi.org/10.1016/j.progsolidstchem.2004.08.001

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using equipment of the Center for Shared Use of Physical Methods of Investigation of Substances and Materials, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia. The XRD measurements were performed using the equipment of the Shared Research Center FSRC “Crystallography and Photonics” RAS supported by the Ministry of Science and Higher Education of the Russian Federation.

Funding

This work was supported by the Russian Science Foundation (grant no. 22-13-00410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Baranchikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polevoi, L.A., Kolesnik, I.V., Kopitsa, G.P. et al. Epoxide-Mediated Synthesis of Two-Component Al2O3–TiO2 Aerogels and Their UV-Protective Characteristics. Russ. J. Inorg. Chem. 68, 1848–1864 (2023). https://doi.org/10.1134/S0036023623602209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602209

Keywords:

Navigation