Skip to main content
Log in

Ligand Induced Morphology Change and Enhancement of Luminescence Emission in CaF2:Eu(III) Nanoparticles: The Role of Ethylene Glycol, Trisodium Citrate and EDTA in Tuning the Particle Size in Seeded-Growth Approach

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ethylene glycol (EG), citrate and EDTA stabilized Eu(III) doped CaF2 nanoparticles were synthesized following colloidal precipitation method. With EDTA, highly monodisperse cubic nanoparticles (NPs) were formed which changes to quasi-spherical morphology when the capping ligand changes to TSC and EG associated with a broader size distribution. Generations of larger NPs were produced through kinetically controlled seeded-growth method where the ligands directly affect the size tunability. The homogeneity of the growth process was maximized by the adjustment of reaction parameters like temperature and concentration of precursor. Under the same reaction conditions, better kinetic control of the growth process and the ease of tuning the size by the ligands follow the order: EDTA > citrate > EG. The Eu3+ emission intensities characteristic of 5D07Fn for the NPs increases when the ligand changes from EG to EDTA through citrate. Among the generations of NPs capped by a particular ligand, the dependence of luminescence intensity on size is observed. With decreasing size, there is luminescence enhancement for NPs stabilized by citrate and EDTA while the trend is opposite for EG stabilized particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Y. Janbandhu, U. Joshi, G. K. Sukhadeve, P. P. Pawar, J. R. Jayaramaiah, and R. S. Gedam, Glass Phys. Chem. 47, 321 (2021). https://doi.org/10.1134/S1087659621040088

    Article  CAS  Google Scholar 

  2. E. A. Malinina, S. E. Korolenko, A. S. Kubasov, G. A. Buzanov, A. V. Golubev, L. V. Goeva, N. P. Simonenko, V. V. Avdeeva, and N. T. Kuznetsov, J. Solid State Chem. 302, 122413 (2021). https://doi.org/10.1016/j.jssc.2021.122413

    Article  CAS  Google Scholar 

  3. N. I. Steblevskaya, M. V. Belobeletskaya, T. P. Yarovaya, and P. M. Nedozorov, Russ. J. Inorg. Chem. 67, 245 (2022). https://doi.org/10.1134/S0036023622020164

    Article  CAS  Google Scholar 

  4. A. V. Chernyshova, A. A. Nikolaev, F. A. Kolokolov, V. V. Dotsenko, N. A. Aksenov, and I. V. Aksenova, Russ. J. Gen. Chem. 91, 1063 (2021). https://doi.org/10.1134/S1070363221060128

    Article  CAS  Google Scholar 

  5. K. Kawano, K. Arai, H. Yamada, N. Hashimoto, and R. Nakata, Sol. Energy Mater. Sol. Cells 48, 35 (1997). https://doi.org/10.1016/S0927-0248(97)00066-4

    Article  CAS  Google Scholar 

  6. C. Bouzigues, T. Gacoin, and A. Alexandrou, ACS Nano 5, 8488 (2011). https://doi.org/10.1021/nn202378b

    Article  CAS  PubMed  Google Scholar 

  7. V. A. Peretertov and F. A. Kolokolov, Russ. J. Inorg. Chem. 63, 661 (2018). https://doi.org/10.1134/S0036023618050169

    Article  CAS  Google Scholar 

  8. Z. Quan, D. Yang, P. Yang, X. Zhang, H. Lian, X. Liu, and J. Jun Lin, Inorg. Chem. 47, 9509 (2008). https://doi.org/10.1021/ic8014207

    Article  CAS  PubMed  Google Scholar 

  9. A. Bensalaha, M. Mortiera, G. Patriarcheb, P. Gredinc, and D. Viviena, J. Solid State Chem. 179, 2636 (2006). https://doi.org/10.1016/j.jssc.2006.05.011

    Article  CAS  Google Scholar 

  10. B. Ritter, T. Krahl, K. Rurack, and E. Kemnitz, J. Materials Chem. C 2, 8607 (2014). https://doi.org/10.1039/c4tc01073f

    Article  CAS  Google Scholar 

  11. P. Maushake, Optik & Photonik 3, 46 (2008). https://doi.org/10.1002/opph.201190192

    Article  Google Scholar 

  12. B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, Nano Lett. 6, 662 (2006). https://doi.org/10.1021/nl052396o

    Article  CAS  PubMed  Google Scholar 

  13. S. E. A. Gratton, P. A. Ropp, P. D. Pohlhaus, and J. M. DeSimone, Proc. Natl. Acad. Sci. 105, 11613 (2008). https://doi.org/10.1073/pnas.0801763105

    Article  PubMed  PubMed Central  Google Scholar 

  14. M. Wu, H. Guo, L. Liu, Y. Liu, and L. Xie, Int. J. Nanomed. 14, 4247 (2019). https://doi.org/10.2147/IJN.S201107

    Article  CAS  Google Scholar 

  15. A. Safronikhin, H. Ehrlich, and G. Lisichkin, J. Alloys Compd. 694, 1182 (2016). https://doi.org/10.1016/j.jallcom.2016.10.128

  16. R. S. Abiev, A. V. Zdravkov, Y. S. Kudryashova, A. A. Alexandrov, S. V. Kuznetsov, and P. P. Fedorov, Russ. J. Inorg. Chem. 66, 1047 (2021). https://doi.org/10.1134/S0036023621070020

    Article  CAS  Google Scholar 

  17. E. T. Goldburt, B. Kulkani, R. N. Bhargava, J. Taylor, and M. Libera, Mater. Res. Soc. Symp. Proc. 424, 441 (1996). https://doi.org/10.1557/PROC-424-441

    Article  Google Scholar 

  18. E. T. Goldburt, B. Kulkani, R. N. Bhargava, J. Taylor, and M. Libera, J. Lumin. 7274, 190 (1997). https://doi.org/10.1016/S0022-2313(96)00237-2

    Article  Google Scholar 

  19. R. S. Ningthoujam, in Synthesis, Characterization and Applications of Multifunctional Materials, Ed. by S. B. Rai and Y. Dwivedi (Nova Sci. Publ., Hauppauge, NY, 2012), p. 145.

    Google Scholar 

  20. G. Wakefield, H. A. Keron, P. J. Dobson, and J. L. Hutchison, J. Coll. Interface Sci. 215, 179 (1999). https://doi.org/10.1006/jcis.1999.6225

    Article  CAS  Google Scholar 

  21. B. Ritter, P. Haida, F. Fink, T. Krahl, K. Gawlitza, K. Rurack, G. Scholz, and E. Kemnitz, Dalton Trans., 46, 2925 (2017). https://doi.org/10.1039/c6dt04711d

    Article  CAS  PubMed  Google Scholar 

  22. L. Song and L. Xue, Appl. Surf. Sci. 258, 3497 (2012). https://doi.org/10.1016/j.apsusc.2011.11.102

    Article  CAS  Google Scholar 

  23. S. Cho, S. J. Park, S. Y. Ko, J. Park, and S. Park, Biomed. Microdevices 14, 1019 (2012). https://doi.org/10.1007/s10544-012-9704-1

    Article  CAS  PubMed  Google Scholar 

  24. S. M. G. Sousa, C. M. Bramante, and E. M. Taga, Braz. Dent. J. 16, 3 (2005). https://doi.org/10.1590/S0103-64402005000100001

    Article  PubMed  Google Scholar 

  25. P. Cortelletti, M. Pedroni, F. Boschi, S. Pin, P. Ghigna, P. Canton, F. Vetrone, and A. Speghini, Cryst. Growth Des. 18, 686 (2018). https://doi.org/10.1021/acs.cgd.7b01050

    Article  CAS  Google Scholar 

  26. L. P. Singh, S. K. Srivastava, R. Mishra, and R. S. Ningthoujam, J. Phys. Chem. C 118, 18087 (2014). https://doi.org/10.1021/jp502825p

    Article  CAS  Google Scholar 

  27. R. D. Shannon, Acta. Cryst. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  28. L. C. O’Brien, H. B. Root, C. Wei, D. Jensen, N. Shabestary, C. De Meo, and D. J. Eder, J. Chem. Educ. 92, 1547 (2015). https://doi.org/10.1021/acs.jchemed.5b00159

    Article  CAS  Google Scholar 

  29. M. Vavrusova and L. H. Skibsted, Int. Dairy J. 57, 20 (2016). https://doi.org/10.1016/j.idairyj.2016.02.033

    Article  CAS  Google Scholar 

  30. B. Salvadori and L. Dei, Langmuir 17, 2371 (2001). https://doi.org/10.1021/la0015967

    Article  CAS  Google Scholar 

  31. S. Mitra, K. Werling, E. J. Berquist, D. S. Lambrecht, and S. Garrett-Roe, J. Phys. Chem. A 125, 4867 (2021). https://doi.org/10.1021/acs.jpca.1c03061

    Article  CAS  PubMed  Google Scholar 

  32. D. T. Sawyer and P. J. Paulsen, J. Am. Chem. Soc. 80, 1597 (1958). https://doi.org/10.1021/ja01540a022

    Article  CAS  Google Scholar 

  33. T. L. Doane, C. Chuang, R. J. Hilln, and C. Burda, Acc. Chem. Res. 45, 317 (2012). https://doi.org/10.1021/ar200113c

    Article  CAS  PubMed  Google Scholar 

  34. M. A. Marini, W. J. Evans, and R. L. Berger, J. Biochem. Biophys. Methods 10, 273 (1985). https://doi.org/10.1016/0165-022X(85)90061-2

    Article  CAS  PubMed  Google Scholar 

  35. Y. V. Griko, Biophys. Chem. 79, 117 (1999). https://doi.org/10.1016/S0301-4622(99)00047-2

    Article  CAS  PubMed  Google Scholar 

  36. N. G. Bastus, J. J. Comenge, and V. Puntes, Langmuir 27, 11098 (2011). https://doi.org/10.1021/la201938u

    Article  CAS  PubMed  Google Scholar 

  37. L. R. Singh, R. S. Ningthoujam, V. Sudarsan, I. Srivastava, S. D. Singh, G. K. Dey, and S. K. Kulshreshtha, Nanotechnology 19, 1 (2008). https://doi.org/10.1088/0957-484/19/05/055201

    Article  Google Scholar 

  38. M. J. Weber, Phys. Rev. B 4, 2932 (1971). https://doi.org/10.1103/PhysRevB.4.2932

    Article  Google Scholar 

  39. H. Guo, X. Yang, T. Xiao, W. Zhang, L. Lou, and J. Mugnier, Appl. Surf. Sci. 230, 215 (2004). https://doi.org/10.1016/j.apsusc.2004.02.032

    Article  CAS  Google Scholar 

  40. M. N. Luwang, R. S. Ningthoujam, S. K. Srivastava, and R. K. Vatsa, J. Am. Chem. Soc. 133, 2998 (2011). https://doi.org/10.1021/ja1092437

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ngasepam Bhogenjit Singh, Thoudam Chanchan Devi or Thiyam David Singh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngasepam Bhogenjit Singh, Devi, T.C. & Singh, T.D. Ligand Induced Morphology Change and Enhancement of Luminescence Emission in CaF2:Eu(III) Nanoparticles: The Role of Ethylene Glycol, Trisodium Citrate and EDTA in Tuning the Particle Size in Seeded-Growth Approach. Russ. J. Inorg. Chem. 68, 1690–1700 (2023). https://doi.org/10.1134/S0036023623601782

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601782

Keywords:

Navigation