Skip to main content
Log in

Substituted Phthalimides Linked to the Cymantrenyl Moiety: Molecules with Tunable Optical and Electrochemical Properties

  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript


The results of investigation of the optical and electrochemical properties of substituted phthalimides linked to a cymantrenyl moiety by IR and NMR spectroscopy, UV-Vis spectroscopy, and cyclic voltammetry and also by DFT calculations are presented. It was shown that the optical, donor-acceptor, and redox properties of the organometallic phthalimides are affected by substituents in position 1 of the side chain of the cymantrene Cp and in position 4 of the phthalimide benzene ring. The reactions of dicarbonyl chelates with external ligands in the dark attest to hemilability of the Mn–O=C(imide) bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others


  1. Jun-ichi Nishida, Yoshiki Morikawa, Akito Hashimoto, et al., Mater. Adv. 2, 7861 (2021).

    Article  CAS  Google Scholar 

  2. Biao Chen, Xuepeng Zhang, Yucai Wang, et al., Chem. Asian J. 14, 751 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. A. Georgiev, D. Yordanov, D. Dimov, et al., J. Photochem. Photobiol., A 393, 112443 (2020).

    Article  CAS  Google Scholar 

  4. N. Venkatramaiah, G. Dinesh Kumar, Y. Chandrasekaran, et al., ACS Appl. Mater. Interfaces 10, 3838 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Xiaodong He, Lunxiang Yin, and Yanqin Li, New J. Chem. 43, 6577 (2019).

    Article  CAS  Google Scholar 

  6. Fanyong Yan, Chunhui Yi, Zhonghua Hao, et al., Surf. Colloids, A 650, 129626 (2022).

  7. M. Zawadzka, P. Nitschke, M. Musiol, et al., Molecules 28, 1740 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. Çakal, S. Ertan, A. Cihaner, et al., Dyes Pigm. 161, 411 (2019).

    Article  CAS  Google Scholar 

  9. Wei Lv, Huijiao Liu, Wen Wang et al., RSC Adv. 7, 18384 (2017).

    Article  Google Scholar 

  10. Zhijun Li, Yong Jin Jeong, Jisu Hong, et al., Appl. ACS, Mater. Interfaces 14, 7073 (2022).

    Article  CAS  Google Scholar 

  11. F. Dierschke, J. Jacob, and K. Mullen, Synth. Met. 156, 433 (2006).

    Article  CAS  Google Scholar 

  12. Quanyou Feng, Xiaojun Zheng, Hongjian Wang, et al., Mater. Adv. 2, 4000 (2021).

    Article  CAS  Google Scholar 

  13. R. Orita, M. Franckevicius, A. Vysniauskas, et al., Phys. Chem. Chem. Phys. 20, 16033 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Taku Shoji, Nanami Iida, Akari Yamazaki, et al., Org. Biomol. Chem. 18, 2274 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Yizhen Zhan, Xue Zhao, Wei Wang, et al., Dyes Pigm. 146, 240 (2017).

    Article  CAS  Google Scholar 

  16. D. Singha, D. K. Sahu, K. Sahu, et al., J. Phys. Chem. B 122, 6966 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. A. Tan, E. Bozkurt, Y. Kara, et al., J. Fluoresc. 27, 981 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. D. Majhi, S. K. Das, P. K. Sahu, et al., Phys. Chem. Chem. Phys. 16, 18349 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Yuanyuan Qin, Guoping Li, Ting Qi, et al., Mater. Chem. Front. 4, 1554 (2020).

    Article  CAS  Google Scholar 

  20. E. S. Kelbysheva, T. V. Strelkova, M. G. Ezernitskaya, et al., Chem. Select 8, e202204162 (2023).

    Article  CAS  Google Scholar 

  21. E. S. Kelbysheva, L. N. Telegina, E. A. Ershova, et al., Russ. Chem. Bull. 66, 327 (2017).

    Article  CAS  Google Scholar 

  22. P. F. Yang and G. K. Yang, J. Am. Chem. Soc. 114, 6937 (1992).

    Article  CAS  Google Scholar 

  23. E. S. Kelbysheva, T. V. Strelkova, M. G. Ezernitskaya, et al., Chem. Select 6, 9861 (2021).

    Article  CAS  Google Scholar 

  24. E. S. Kelbysheva, L. N. Telegina, O. V. Abramova, et al., Russ. Chem. Bull. 11, 2646 (2015).

    Article  CAS  Google Scholar 

  25. C. Zhang, Z. Niu, Y. Ding, et al., Chem 4, 2814 (2018).

    Article  CAS  Google Scholar 

  26. A. D. Hendsbee, S. M. McAfee, J.-P. Sun, et al., J. Mater. Chem. C 3, 8904 (2015).

    Article  CAS  Google Scholar 

  27. K. Wu, B. Pudasaini, J. Y. Park, et al., Organometallics 3, 679 (2020).

    Article  CAS  Google Scholar 

  28. A. S. Kostyuchenko, A. Kurowska, P. Zassowski, et al., Org. Chem. 84, 10040 (2019).

    Article  CAS  Google Scholar 

Download references


Infrared and NMR spectral studies were carried out using the research equipment of the Center of Molecular Structure Investigation of the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, supported by the Ministry of Science and Higher Education of the Russian Federation.


This study was supported by the Russian Science Foundation (RSF no. 23-23-00192).

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. S. Kelbysheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Supplementary Information

The supplementary information presents experimental data and characterization of the obtained compounds by NMR (Fig. S1–S11), IR (Fig. S12–S16), and CV (Fig. S17–S18) and the results of DFT calculations (Fig. S19–S33, Table S1).


Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelbysheva, E.S., Strelkova, T.V., Ezernitskaya, M.G. et al. Substituted Phthalimides Linked to the Cymantrenyl Moiety: Molecules with Tunable Optical and Electrochemical Properties. Russ. J. Inorg. Chem. 68, 1237–1246 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words: