Skip to main content
Log in

Synthesis of Magnesium- and Aluminum-Based Mixed Oxide Systems by Low and High Supersaturation Methods

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Magnesium–aluminum layered double hydroxides and mixed oxides based on them were obtained by high and low supersaturation methods and analyzed. It was shown that the phase composition and formation of nano-sized particles with a large surface area is significantly affected by the rate of introduction of magnesium–aluminum systems into the medium of the precipitated material. All of the obtained samples were studied by thermogravimetric analysis with mass-spectrometric detection, X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Hájek, Chem. Eng. J. 263, 160 (2015). https://doi.org/10.1016/j.cej.2014.11.006

    Article  CAS  Google Scholar 

  2. R. Tanaka, I. Ogino, and S. R. Mukai, ACS Omega 3, 16916 (2018). https://doi.org/10.1021/acsomega.8b02557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. Kuljiraseth, Appl. Catal. B 243, 415 (2019). https://doi.org/10.1016/j.apcatb.2018.10.073

    Article  CAS  Google Scholar 

  4. J. Kocík, J. Mol. Catal. 516, 111946 (2021). https://doi.org/10.1016/j.mcat.2021.111946

    Article  CAS  Google Scholar 

  5. D. P. Octavian and I. C. M. Didier Tichit, Appl. Clay Sci. 61, 52 (2012). https://doi.org/10.1016/j.clay.2012.03.006

    Article  CAS  Google Scholar 

  6. M. Dixit, D. Manish, M. Manish, et al., Chem. Eng. Ind. J. 19, 458 (2013). https://doi.org/10.1016/j.jiec.2012.08.028

    Article  CAS  Google Scholar 

  7. M. J. Climent, A. Corma, S. Iborra, and J. Primo, J. Catal. 151, 60 (1994). https://doi.org/10.1006/jcat.1995.1008

    Article  Google Scholar 

  8. C. N. Pérez, Quim. Nova 32, 2341 (2009). https://doi.org/10.1590/S0100-40422009000900020

    Article  Google Scholar 

  9. L. Hora, Catal. Today 223, 138 (2014). https://doi.org/10.1016/j.cattod.2013.09.022

    Article  CAS  Google Scholar 

  10. P. Jorge, L. Joseph, and F. François, Catal. J. 211, 150 (2002). https://doi.org/10.1006/jcat.2002.3706

    Article  CAS  Google Scholar 

  11. M. Bolognini, Catal. Today 75, 103 (2002). https://doi.org/10.1016/S0920-5861(02)00050-0

    Article  CAS  Google Scholar 

  12. Z. Xiao, Mol. Catal. 436, 1 (2017). https://doi.org/10.1016/j.mcat.2017.04.016

    Article  CAS  Google Scholar 

  13. D. Cosano, J. Hidalgo-Carrillo, D. Esquivel, et al., J. Porous Mater. 27, 441 (2020). https://doi.org/10.1007/s10934-019-00825-8

    Article  CAS  Google Scholar 

  14. J. Quesada, L. Faba, E. Diaz, and S. Ordonez, Appl. Catal., A 542, 271 (2017). https://doi.org/10.1016/j.apcata.2017.06.001

  15. J. He, M. Wei, B. Li, et al., in Layered Double Hydroxides, Ed. by X. Duan and D. G. Evans (Springer, 2006).

    Book  Google Scholar 

  16. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X-ray and Electron-Optical Analysis (MISIS, Moscow, 1994) [in Russian].

    Google Scholar 

  17. L. Kong, Chem. Eng. J. 371, 893 (2019). https://doi.org/10.1016/j.cej.2019.04.116

    Article  CAS  Google Scholar 

  18. N. N. Leont’eva, V. D. Drozdov, O. B. Bel’skaya, and S. V. Cherepanova, Russ. J. Gen. Chem. 90, 509 (2020). https://doi.org/10.1134/S1070363220030275

    Article  Google Scholar 

  19. K. D. H. Nguyễn and N. D. Hoàng, Vietnam J. Sci. Technol. 52, 755 (2015). https://doi.org/10.15625/0866-708X/52/6/3636

    Article  Google Scholar 

  20. Č. Libor, K. Petr, S. Lucie, and H. Martin, Top. Catal. 56, 586 (2013). https://doi.org/10.1007/s11244-013-0008-3

    Article  CAS  Google Scholar 

  21. L. C. Débora, R. A. Roberto, T. R. Michelly, et al., Appl. Catal., A 415-416, 96 (2012). https://doi.org/10.1016/j.apcata.2011.12.009

  22. O. Kikhtyanin, L. Capek, L. Smoláková, et al., Ind. Eng. Chem. Res. 56, 13411 (2017). https://doi.org/10.1021/acs.iecr.7b03367

    Article  CAS  Google Scholar 

  23. S. Masoud, T. M. Afshin, A. H. Seyed, and M. Sakineh, J. Water Environ. Nanotechnol. 6, 72 (2021). https://doi.org/10.22090/jwent.2021.01.007

    Article  CAS  Google Scholar 

  24. P. P. Huang, RSC. Adv. 5, 10412 (2015). https://doi.org/10.1039/C4RA15160G

  25. G. Varga, M. Szabados, Á. Kukovecz, et al., Mater. Res. Lett. 8, 68 (2020). https://doi.org/10.1080/21663831.2019.1700199

    Article  CAS  Google Scholar 

  26. M. Abniki, A. Moghimi, and F. Azizinejad, J. Serb. Chem. Soc. 85, 1223 (2020). https://doi.org/10.2298/JSC191011004A

    Article  CAS  Google Scholar 

  27. L. Chen, B. Sun, X. Wang, et al., J. Mater. Chem. B 1, 2268 (2013). https://doi.org/10.1039/C3TB00044C

    Article  CAS  PubMed  Google Scholar 

  28. P.-P. Huang, C.-Y. Cao, F. Wei, et al., RSC Adv. 5, 10412 (2015). https://doi.org/10.1039/C4RA15160G

    Article  CAS  Google Scholar 

  29. A. M. Cardinale, C. Carbone, S. Consani, et al., Crystals 10, 443 (2020). https://doi.org/10.3390/cryst10060443

    Article  CAS  Google Scholar 

  30. K. Hag-Soo, Y. Yohtaro, K. Je-Deok, et al., Solid State Ionics 181, 883 (2010). https://doi.org/10.1016/j.ssi.2010.04.037

    Article  CAS  Google Scholar 

  31. X. Wang, X. Zhu, and X. Meng, RSC Adv. 7, 34984 (2017). https://doi.org/10.1039/c7ra04646d

  32. S. Aisawa, C. Nakada, H. Hirahara, et al., Appl. Clay Sci. 180, 105205 (2019). https://doi.org/10.1016/j.clay.2019.105205

    Article  CAS  Google Scholar 

  33. H. Zaghouane-Boudiaf, M. Boutahala, and L. Arab, Chem. Eng. J. 187, 142 (2012). https://doi.org/10.1016/j.cej.2012.01.112

    Article  CAS  Google Scholar 

  34. M. Thommes, K. Kaneko, A. V. Neimark, et al., Pure Appl. Chem. 87, 1051 (2015). https://doi.org/10.3390/cryst10060443

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Fadeev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadeev, V.V., Tronov, A.P., Tolchev, A.V. et al. Synthesis of Magnesium- and Aluminum-Based Mixed Oxide Systems by Low and High Supersaturation Methods. Russ. J. Inorg. Chem. 68, 538–546 (2023). https://doi.org/10.1134/S0036023623600478

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623600478

Keywords:

Navigation